
So�ware Development (cs2500)

Lecture 37: Event Handlers

M.R.C. van Dongen

January 24, 2011

Contents
1 Outline 1

2 �eObserver Pattern 1
2.1 Case Study . 2

3 Windows 4

4 Events 6
4.1 Back to Observers . 6

4.2 Creating an Event Listener . 6

4.3 An Interactive Button . 7

4.4 A Button with a Counter . 7

5 ForWednesday 8

6 Bibliography 8

1 Outline
�is lecture is about event handlers and guis. It starts with our �rst design pattern: the observer pattern.

�e observer pattern is heavilly used in gui applications. It is known/used as “the” 〈X〉-event/〈X〉-event

listener pattern. �e rest of the lecture is an introduction to guis. Speci�cally, we shall study the

components of a Java gui, and buttons which change if you click on them.

2 �eObserver Pattern
�e observer pattern is a commonly used design pattern. It de�nes a one-to-many object dependency so

that if one object’s state changes, all its dependents are automatically noti�ed [Gamma et al., 2008]. �e

1

«interface»

Subject

attach(Observer o)
detach(Observer o)
notify()

ConcreteSubject

Observer[] observers

attach(Observer o)
detach(Observer o)
notify()

ConcreteObserver
Subject subject

update(Object o)

«interface»

Observer

update(Object o)

implements

implements

has a n

has a1

Figure 1: Observer Pattern in uml.

design pattern is also know as Dependents, Publish-Subscribe [Freeman and Freeman, 2005, Pages 44–

78], and Event-Listener. �e pattern works as follows:

• �ere is one Subject. You may regard it as a newspaper.

• �ere are zero or more Observers. You may regard them as potential newspaper readers.

• An Observer can be attached to the Subject. �is is the equivalent of subscribing to the newspaper.

• An Observer can be detached from the Subject. �is is the equivalent of unsubscribing to the

newspaper.

• If the Subject’s state changes it noti�es all its Observers. �is is done by calling each Subject’s

update() method.

Figure 1 depicts a uml class diagram of the design pattern.

2.1 Case Study
Let’s implement an example. We have a newspaper and readers of the newspaper. �e readers can

subscribe and unsubscribe. �e newspaper informs the subscribers about new newsitems.

�e Subject and Observer are best implemented with an interface. For the moment we write our

Subject interface as follows.

2

public interface Subject {
public void attach(Observer subscriber);
public void detach(Observer subscriber);
public void notify(String message);

}

Java

For the purpose of an example, we give notity a String argument. �e following is the Observer
interface.

public interface Observer {
public void update(String message);

}

Java

Having de�ned the interfaces we proceed by implementing a concrete class for each of them. �e

following is the class ConcreteObserver which implements the readers of the newspaper.

public class ConcreteObserver implements Observer {
String name;
public ConcreteObserver(String name) {

this.name = name;
}

@Override
public void update(String message) {

System.out.println(name + " updated: " + message);
}

}

Java

�e following is a concrete implementation of the Subject.

import java.util.ArrayList;

public class ConcreteSubject implements Subject {
private final ArrayList<Observer> subscribers;

public ConcreteSubject() {
subscribers = new ArrayList<Observer>();

}

@Override
public void attach(Observer subscriber) {

subscribers.add(subscriber);
}

@Override
public void detach(Observer subscriber) {

subscribers.remove(subscriber);
}

@Override
public void notify(String news) {

for(Observer subscriber : subscribers) {
subscriber.update(news);

}
}

}

Java

Having de�ned the concrete classes, we can use them in the following main class. Notice that it is not
required that the variables have the types Subject and Observer. We could have also used any combina-

tion of ConcreteSubject and Subject for the newspapers and any combination of ConcreteObserver
and Observer for the readers.

3

public class Main {
public static void main(String[] args) {

Subject eolas = new ConcreteSubject();
Subject sun = new ConcreteSubject();

Observer john = new ConcreteObserver("John");
Observer jane = new ConcreteObserver("Jane");
Observer eoin = new ConcreteObserver("Eoin");

sun.attach(john);
sun.attach(eoin);
sun.attach(jane);
eolas.attach(jane);

eolas.notify("Assignment 5 handed back.");
sun.notify("Biffo quits and so do greens.");

sun.detach(jane);

sun.notify("Jane unsubscribed.");
}

}

Java

When we run our program we get the following output:

$ java Main
Jane updated: Assignment 5 handed back.
John updated: Biffo quits and so do greens.
Eoin updated: Biffo quits and so do greens.
Jane updated: Biffo quits and so do greens.
John updated: Jane unsubscribed.
Eoin updated: Jane unsubscribed.
$

Unix Session

3 Windows
�is section is an introduction to windows, JFrames really.

Without a window you could not write a gui application. In Java a window is represented as a

JFrame object. �e JFrame is where you put your window’s widgets in. Possible widgets are buttons,

checkboxes, sliders, dialogue boxes, text �elds, and so on. �e appearance of a JFrame may di�er from

os (operating system) to os.

Creating a window is easy with JFrames. It gives some fresh air to your applications.

�e following are the main operations that let you open a window with a JFrame.

• Create a JFrame.

JFrame frame = new JFrame(〈title string〉); Java

• Set the JFrame’s closing operation.

frame.setDefaultClosingOperation(JFrame.EXIT_ON_CLOSE); Java

4

Figure 2: A JButton in a JFrame.

�is method determines how the GUI behaves when you leave the window. Using JFrame.EXIT_ON_CLOSE
exits the application using System.exit() method.

• Make one or several widgets and add them to the JFrame.

JButton button = new JButton("Click me");
frame.getContentPane().add(button);

Java

• Give the JFrame a size and make it visible. �e size is provided as a pair of ints which represent the

horizontal and vertical size in pixels.

frame.setSize(300, 300);
frame.setVisible(true);

Java

�e following is a whole program.

import javax.swing.*;

public class DummyButton {
public static void main(String[] args) {

JFrame frame = new JFrame("Our second Button");
JButton button = new JButton("Click me");
frame.getContentPane().add(button);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize(300, 300);
frame.setVisible(true);

}
}

Java

When you run the program you may see a similar button to the button which is depicted in Figure 2.

�at looks great and easy. But, horror of horrors, when we click the button: nothing happens.

5

4 Events
�is section explains how to make gui application interactive. �e basic ingredients are events. �e

following starts by explaining events and by explaining events in terms of the observer pattern. �is is

continued by explaining how to translate the observer pattern in terms of gui operations. As we shall

see, all we need to do is de�ne an event listener. �is section concludes by writing two interactive button

applications.

It should not have come as a complete surprise that our button did nothing when we clicked it. A�er

all, we didn’t tell it what to do. Let alone, how, and when. �e button already has a mechanism to tell us

when it’s clicked:

Event: When the button is clicked this generates an event. �is event is called a button event.

To make the button do something when it’s clicked we need two things:

Handler: A button event handler that makes the button behave how it is supposed to behave.

Listener: A button event listener that detects button events. Each time the button event listener detects

the button event, it calls the button event handler.

�e following is the mechanism.

1. �e button event is activated when the button is clicked.

2. �e button event triggers the button event listener.

3. �e button event listener calls the button event handler.

4.1 Back to Observers
�e mechanism which we studied in the previous section is just an instance of the observer pattern. �e

JButton is the Subject. Clicking the JButton is a user action. �e JButton turns it into a button event

object, event. It may be thought of as a call to notify(event). �e Observers are the button event

listeners. Each Observer implements its button event handler. Each event handler is a dedicated update(
) method. �e call update(event) allows the Subject to send the button event to the Observer
object.

4.2 Creating an Event Listener
�is section explains how to create an event listener. As we shall see this is easy.

An event listener class implements an event listener interface.

• Button event listeners implement the button listener interface,

• mouse event listeners implement the mouse listener interface,

• and so on.

6

Some interfaces have more than one notify() method. For buttons you usually are only interested if

it’s clicked. However, it is possible to distinguish between events pressing and releasing a button. �e

“click events” for JButtons are ActionEvent objects. So to implement our application we implement the

ActionListener interface. �e method actionPerformed(ActionEvent event) in the interface is

equivalent to the Observer’s update() method.

4.3 An Interactive Button
�e following presents a simple example of an interactive button. All it does is print You clicked me
when you click it. For simplicity we implement the button listener class as part of the main class. �e

code for creating the JFrame-speci�c code has also been omitted for simplicity.

import javax.swing.*;
import java.awt.event.*;

public class SimpleGUI implements ActionListener {
private final JButton button;

public static void main(String[] args) {
JFrame frame = 〈Create JFrame〉
SimpleGUI gui = new SimpleGUI();
〈Remaining JFrame-related statements.〉

}

public SimpleGUI() {
button = new JButton("Click me");
button.addActionListener(this);

}

@Override
public void actionPerformed(ActionEvent event) {

button.setText("You clicked me");
}

}

Java

Since the button event listener is in the class SimpleGUI, and since SimpleGUI implements the Ac-
tionListener interface, each SimpleGUI object IS-An ActionListener object. In the constructor

SimpleGUI() we attach the observer (action even listener) this to the JButton button with the call

button.addActionListener(this).

4.4 A Button with a Counter
Now that we know the basics we can easily add things to it. In this section we make the button count

and display the number of times it has been clicked.

7

If you think about it all that’s needed is add a counter attribute to the action listener object, change

the constructor of the action listener, and change the implementation of the method actionPerformed(
). �e following are the details. Of course the assignment count = 0 could have been omitted. (Why?)

import javax.swing.*;
import java.awt.event.*;

public class CountingButton implements ActionListener {
private int clicks;
private final JButton button;

public static void main(String[] args) {
JFrame frame = 〈Create JFrame〉
SimpleGUI gui = new SimpleGUI();
〈Remaining JFrame-related statements.〉

}

public CountingButton() {
clicks = 0;
button = new JButton("Click me");
button.addActionListener(this);

}

@Override
public void actionPerformed(ActionEvent event) {

String text = "# clicks = " + ++ clicks + ". Try again.";
button.setText(text);

}
}

Java

5 ForWednesday
Study the lecture notes, and study Pages 353–368 of Chapter 11.

6 Bibliography

References
[Freeman and Freeman, 2005] Eric Freeman and Elisabeth Freeman. Head First Design Patterns.

O’Reilly, 2005.

8

[Gamma et al., 2008] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented So�ware. Addison–Wesley, 2008. 36th Printing.

9

	Outline
	The Observer Pattern
	Case Study

	Windows
	Events
	Back to Observers
	Creating an Event Listener
	An Interactive Button
	A Button with a Counter

	For Wednesday
	Bibliography

