
1

Section 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2 7 Socket programming network applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.7 Socket programming
with UDP
2.8 Socket programming
with TCP

2: Application Layer 62

DNS: Domain Name System

People: many identifiers:
SSN name passport #

Domain Name System:
distributed databaseSSN, name, passport #

Internet hosts, routers:
IP address (32 bit) -
used for addressing
datagrams
“name”, e.g.,
ww.yahoo.com - used by
hum ns

distributed database
implemented in hierarchy of
many name servers
application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

note: core Internet

2: Application Layer 63

humans
Q: map between IP

addresses and name ?

note core Internet
function, implemented as
application-layer protocol
complexity at network’s
“edge”

2

DNS
Why not centralize DNS?

single point of failure
DNS services

hostname to IP p
traffic volume
distant centralized
database
maintenance

d ’t l !

m
address translation
host aliasing

Canonical, alias names
mail server aliasing
load distribution

replicated Web

2: Application Layer 64

doesn’t scale!replicated Web
servers: set of IP
addresses for one
canonical name

Root DNS Servers

DNS org DNS servers edu DNS servers

Distributed, Hierarchical Database

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Client wants IP for www.amazon.com; 1st approx:
client queries a root server to find com DNS server

2: Application Layer 65

client queries com DNS server to get amazon.com
DNS server
client queries amazon.com DNS server to get IP
address for www.amazon.com

3

DNS: Root name servers
contacted by local name server that can not resolve name
root name server:

contacts authoritative name server if name mapping not knowncontacts authoritative name server if name mapping not known
gets mapping
returns mapping to local name server

e NASA Mt View, CA
f I t t S ft C P l Alt

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

2: Application Layer 66

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

f Internet Software C. Palo Alto,
CA (and 36 other locations)

Paris, SF)

TLD and Authoritative Servers

Top-level domain (TLD) servers:
responsible for com org net edu etc and all responsible for com, org, net, edu, etc, and all
top-level country domains uk, fr, ca, jp.
Network Solutions maintains servers for com TLD
Educause for edu TLD

Authoritative DNS servers:
organization’s DNS servers, providing
authoritative hostname to IP mappings for

2: Application Layer 67

authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).
can be maintained by organization or service
provider

4

Local Name Server

does not strictly belong to hierarchy
h ISP (id ti l ISP each ISP (residential ISP, company,

university) has one.
also called “default name server”

when host makes DNS query, query is sent
to its local DNS server

t f d i t hi h

2: Application Layer 68

acts as proxy, forwards query into hierarchy

root DNS server

2
3

4
TLD DNS server

DNS name
resolution example

Host at cis.poly.edu
wants IP address for

local DNS server
dns.poly.edu

1

4

5

6

authoritative DNS server

78

wants IP address for
gaia.cs.umass.edu

iterated query:
r contacted server

replies with name of
server to contact

2: Application Layer 69

requesting host
cis.poly.edu

gaia.cs.umass.edu

authoritative DNS server
dns.cs.umass.edur “I don’t know this

name, but ask this
server”

5

root DNS server

2 3recursive query:
r puts burden of name

DNS name
resolution example

local DNS server
dns.poly.edu

1

45

67

8

TLD DNS server

r puts burden of name
resolution on
contacted name
server

r heavy load?

2: Application Layer 70

requesting host
cis.poly.edu

gaia.cs.umass.edu

authoritative DNS server
dns.cs.umass.edu

DNS: caching and updating records

once (any) name server learns mapping, it caches
mapping

cache entries timeout (disappear) after some
time
TLD servers typically cached in local name
servers

• Thus root name servers not often visited
update/notify mechanisms under design by IETF

2: Application Layer 71

p fy m m g y
RFC 2136
http://www.ietf.org/html.charters/dnsind-charter.html

6

DNS records
DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

Type=NS
name is domain (e g

yp

r Type=A
name is hostname
value is IP address

r Type=CNAME
name is alias name for some
“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

 l

2: Application Layer 72

name is domain (e.g.
foo.com)
value is hostname of
authoritative name
server for this domain

value is canonical name

r Type=MX
value is name of mailserver
associated with name

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
r identification: 16 bit #

for query, reply to query
uses same #

r flags:
query or reply

2: Application Layer 73

recursion desired
recursion available
reply is authoritative

7

DNS protocol, messages

Name, type fields
f for a query

RRs in response
to query

records for
authoritative servers

2: Application Layer 74

additional “helpful”
info that may be used

Inserting records into DNS
example: new startup “Network Utopia”
register name networkuptopia.com at DNS registrar
(k l)

g p p g
(e.g., Network Solutions)

provide names, IP addresses of authoritative name server
(primary and secondary)
registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

2: Application Layer 75

create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com
How do people get IP address of your Web site?

8

Section 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2 7 Socket programming network applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.7 Socket programming
with UDP
2.8 Socket programming
with TCP

2: Application Layer 76

Pure P2P architecture

no always-on server
arbitrary end systems arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses

Th i

peer-peer

2: Application Layer 77

Three topics:
File distribution
Searching for information
Case Study: Skype

9

File Distribution: Server-Client vs P2P
Question : How much time to distribute file

from one server to N peers?

us

u2d1 d2
u1

Server

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

2: Application Layer 78

uN

dN Network (with
abundant bandwidth)

File distribution time: server-client

u
u2d1 d2

u1

Server

Fserver sequentially
sends N copies: us 2

uN

dN
Network (with
abundant bandwidth)

sends N copies:
NF/us time

client i takes F/di
time to download

2: Application Layer 79

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

10

File distribution time: P2P

u
u2d1 d2

u1

Server

Fserver must send one
copy: F/us time us 2

uN

dN
Network (with
abundant bandwidth)

copy: F/us time
client i takes F/di time
to download
NF bits must be
downloaded (aggregate)
r fastest possible upload rate: us + Σui

2: Application Layer 80

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }
i

3.5

Server-client vs. P2P: example
Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

1

1.5

2

2.5

3

3.5

m
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

2: Application Layer 81

0

0.5

1

0 5 10 15 20 25 30 35

N

M
in

im

11

File distribution: BitTorrent

tracker: tracks peers torrent: group of
r P2P file distribution

tracker tracks peers
participating in torrent

g p
peers exchanging
chunks of a file

obtain list
of peers

2: Application Layer 82

trading
chunks

peer

BitTorrent (1)
fil di id d i t 256KB h kfile divided into 256KB chunks.
peer joining torrent:

has no chunks, but will accumulate them over time
registers with tracker to get list of peers,
connects to subset of peers (“neighbors”)

while downloading, peer uploads chunks to other

2: Application Layer 83

while downloading, peer uploads chunks to other
peers.
peers may come and go
once peer has entire file, it may (selfishly) leave or
(altruistically) remain

12

BitTorrent (2)
Pulling Chunks

at any given time,

Sending Chunks: tit-for-tat
r Alice sends chunks to four

neighbors currently
sending her chunks at the y g

different peers have
different subsets of
file chunks
periodically, a peer
(Alice) asks each
neighbor for list of

sending her chunks at the
highest rate

re-evaluate top 4 every
10 secs

r every 30 secs: randomly
select another peer,
starts sending chunks

2: Application Layer 84

chunks that they have.
Alice sends requests
for her missing chunks

rarest first

starts sending chunks
newly chosen peer may
join top 4
“optimistically unchoke”

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers() p p

2: Application Layer 85

With higher upload rate,
can find better trading
partners & get file faster!

13

Distributed Hash Table (DHT)

DHT = distributed P2P database
D t b h (k l) i Database has (key, value) pairs;

key: ss number; value: human name
key: content type; value: IP address

Peers query DB with key
DB returns values that match the key

P l (k l) Peers can also insert (key, value) peers

DHT Identifiers

Assign integer identifier to each peer in range
[0 2n 1][0,2n-1].

Each identifier can be represented by n bits.
Require each key to be an integer in same range.
To get integer keys, hash original key.

eg, key = h(“Led Zeppelin IV”)
Thi i h th ll it di t ib t d “h h” t blThis is why they call it a distributed “hash” table

14

How to assign keys to peers?

Central issue:
Assigning (key value) pairs to peersAssigning (key, value) pairs to peers.

Rule: assign key to the peer that has the
closest ID.
Convention in lecture: closest is the
immediate successor of the key.
E 4 1 3 4 5 8 10 12 14 Ex: n=4; peers: 1,3,4,5,8,10,12,14;

key = 13, then successor peer = 14
key = 15, then successor peer = 1

1

3

Circular DHT (1)

3

4

5

8
10

12

15

8

Each peer only aware of immediate successor
and predecessor.
“Overlay network”

15

Circle DHT (2)

0001 Who’s resp
f k 1110 ?

O(N) messages
on avg to resolve

0011

0100

1111

for key 1110 ?
I am

on avg to resolve
query, when there
are N peers

1110

1110

1110

0101

1000
1010

1100
1110

1110

1110

Define closest
as closest
successor

Circular DHT with Shortcuts
1

3
15

Who’s resp
for key 1110?

4

5

8
10

12

Each peer keeps track of IP addresses of predecessor,
successor, short cuts.
Reduced from 6 to 2 messages.
Possible to design shortcuts so O(log N) neighbors, O(log
N) messages in query

16

Peer Churn
1

315

•To handle peer churn, require
each peer to know the IP address
of its two successors

Peer 5 abruptly leaves

4

5

8
10

12

of its two successors.
• Each peer periodically pings its
two successors to see if they
are still alive.

Peer 5 abruptly leaves
Peer 4 detects; makes 8 its immediate successor;
asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.
What if peer 13 wants to join?

P2P Case study: Skype

inherently P2P: pairs
of users communicate.

Skype clients (SC)

of users communicate.
proprietary
application-layer
protocol (inferred via
reverse engineering)
hierarchical overlay
with SNs

Supernode
(SN)

Skype
login server

2: Application Layer 93

with SNs
Index maps usernames
to IP addresses;
distributed over SNs

17

Peers as relays

Problem when both
Alice and Bob are
behind “NATs”.

NAT prevents an outside
peer from initiating a call
to insider peer

Solution:
Using Alice’s and Bob’s
SNs, Relay is chosen

2: Application Layer 94

Each peer initiates
session with relay.
Peers can now
communicate through
NATs via relay

Section 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2 7 Socket programming network applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.7 Socket programming
with UDP
2.8 Socket programming
with TCP

2: Application Layer 95

18

Socket programming
Goal: learn how to build client/server application that

communicate using sockets

Socket API
introduced in BSD4.1 UNIX,
1981
explicitly created, used,
released by apps
client/server paradigm
t t f t t

A application-created,
OS-controlled interface

(a “door”) into which
application process can

both send and

socket

2: Application Layer 96

two types of transport
service via socket API:

UDP
TCP

receive messages to/from
another application

process

Socket programming basics

Server must be
running before

Socket is locally
identified with a port running before

client can send
anything to it.
Server must have a
socket (door)
through which it
receives and sends

identified with a port
number

Analogous to the apt #
in a building

Client needs to know
server IP address and receives and sends

segments
Similarly client
needs a socket

server IP address and
socket port number.

2: Application Layer 97

19

Socket programming with UDP

UDP: no “connection” between
client and server
no handshaking
sender explicitly attaches
IP address and port of
destination to each segment
OS attaches IP address and
port of sending socket to
each segment

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

2: Application Layer 98

g
Server can extract IP
address, port of sender
from received segment

Note: the official terminology
for a UDP packet is “datagram”.
In this class, we instead use “UDP
segment”.

Client/server socket interaction: UDP
Server

create socket

Client

t k t create socket,
clientSocket =
DatagramSocket()

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to

2: Application Layer 99

close
clientSocket

read datagram from
clientSocket

write reply to
serverSocket
specifying
client address,
port number

20

Example: Java client (UDP)

m
U

se
r

keyboard monitor

input

se
nd

P
ac

ke
t

ec
ei

ve
P

ac
ke

t

in
Fr

om

Process

UDP
packet

stream

UDP
packet

Output: sends
packet (recall
that TCP sent
“byte stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

2: Application Layer 100

to network from network

re

clientSocket
UDP

socket

y)

client UDP
socket

UDP observations & questions
Both client server use DatagramSocket
Dest IP and port are explicitly attached to D t an p rt ar p c t y attach t
segment.
What would happen if change both clientSocket
and serverSocket to “mySocket”?
Can the client send a segment to server without
knowing the server’s IP address and/or port knowing the server s IP address and/or port
number?
Can multiple clients use the server?

2: Application Layer 101

21

Section 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2 7 Socket programming network applications

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.7 Socket programming
with UDP
2.8 Socket programming
with TCP

2: Application Layer 102

Socket-programming using TCP

TCP service: reliable transfer of bytes from one
process to anotherprocess to another

process
socket

controlled by
application
developer

process

TCP with
socket

controlled by
application
developer

controlled by

2: Application Layer 103

TCP with
buffers,
variables

controlled by
operating

system

host or
server

TCP with
buffers,
variables

controlled by
operating
system

host or
server

internet

22

Socket programming with TCP
Client must contact server

server process must first
be running

When contacted by client,
server TCP creates new
socket for server process to be running

server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:
creating client-local TCP
socket

socket for server process to
communicate with client

allows server to talk with
multiple clients
source port numbers
used to distinguish
clients (more in Chap 3)

2: Application Layer 104

specifying IP address, port
number of server process
When client creates
socket: client TCP
establishes connection to
server TCP

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

Client/server socket interaction: TCP

create socket,
port=x, for

Server (running on hostid) Client

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

port x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

send request using
li tS k tread request from

TCP
connection setup

2: Application Layer 105

close
connectionSocket

read reply from
clientSocket

close
clientSocket

clientSocketread request from
connectionSocket

write reply to
connectionSocket

23

er

keyboard monitor

Stream jargon
A stream is a sequence of
characters that flow into

er
ve

r

Se
rv

er

in
Fr

om
U

se

Process

input

input
stream

output

Client
process

or out of a process.
An input stream is
attached to some input
source for the process,
e.g., keyboard or socket.
An output stream is
attached to an output

 i

2: Application Layer 106

ou
tT

oS
e

to network from network

in
Fr

om
S

clientSocket

p
stream

p
stream

TCP
socket

client TCP
socket

source, e.g., monitor or
socket.

TCP observations & questions

Server has two types of sockets:
ServerSocket and Socket

When client knocks on serverSocket’s “door,”
server creates connectionSocket and completes
TCP conx.
Dest IP and port are not explicitly attached to
segment.
Can multiple clients use the server?

2: Application Layer 107

24

CS2505 labs

Th l b l t thi ti f th The labs complement this section of the
course by allowing you to write your own
simple client/sever programs using

Java
UDP
TCPTCP

University College Cork CS2505 108

Section 2: Summary

application architectures
client server

our study of network apps now complete!
r specific protocols:

HTTPclient-server
P2P
hybrid

application service
requirements:

reliability, bandwidth,
delay

HTTP
FTP
SMTP, POP, IMAP
DNS
P2P: BitTorrent, Skype

r socket programming

2: Application Layer 109

delay
Internet transport
service model

connection-oriented,
reliable: TCP
unreliable, datagrams: UDP

25

Section 2: Summary

i l / l

Most importantly: learned about protocols

 h typical request/reply
message exchange:

client requests info or
service
server responds with
data, status code

message formats:

Important themes:
r control vs. data msgs

in-band, out-of-band
r centralized vs.

decentralized
r stateless vs stateful

2: Application Layer 110

message formats:
headers: fields giving
info about data
data: info being
communicated

r stateless vs. stateful
r reliable vs. unreliable

msg transfer
r “complexity at network

edge”

