Qutline

Q 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

O 3.2 Multiplexing and = segment structure
demul'riplexing « reliable data transfer

0 3.3 Connectionless + flow control
transport: UDP < connection management

0 3.4 Principles of 0 3.6 TCP congestion

reliable data transfer control

Transport Layer 3-54

TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

Q point-to-point: Q full duplex data:
+ one sender, one receiver < bi-directional data flow
Q reliable, in-order byte in same connection
steam: « MSS: maximum segment

size
0 connection-oriented:

+ handshaking (exchange
of control msgs) init's
sender, receiver state

Q send & receive buffers before data exchange

Q flow controlled:

wae * Sender will not
oo overwhelm receiver

+ no “"message boundaries”
Q pipelined:
+ TCP congestion and flow
control set window size

Transport Layer 3-55

TCP segment structure

URG: urgent data
(generally not used)

32 bits

source port #

dest port #

counting
by bytes

ACK: ACK #

sequence humber

of data

valid ——acknowledgement number

(not segments!)

PSH: push data now
(generally not used)—|

head[not
M

PRIl

Receive window

Mm Urg data poin

bytes

ter rcvr willing

RST, SYN, FIN:— |

Op% (variable length)

to accept

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

application
data
(variable length)

Transport Layer 3-56

TCP seq. #'s and ACKs

Seq. #'s:
« byte stream

“humber” of first
byte in segment’s

data
ACKs:
+ seq # of next

expected from

other side

< cumulative ACK

Q: how receiver handles
out-of-order segments

S
types
)
s
byte cor TR
host ACKs
receipt s

of echoed ©

'

« A: TCP spec doesn't

say, - up to
implementer

simple telnet scenario

Host B @

receipt of
'C’, echoes
back 'C’

‘

=C
A3, data =

time
|

Transport Layer 3-57

Qutline

Q 3.1 Transport-layer
services

O 3.2 Multiplexing and
demultiplexing

Q 3.3 Connectionless
transport: UDP

Q 3.4 Principles of
reliable data transfer

a 3.5 Connection-oriented
transport: TCP
< segment structure
+ reliable data transfer
+ flow control
« connection management

0 3.6 TCP congestion
control

Transport Layer 3-58

TCP reliable data transfer

Q TCP creates rdt
service on top of IP's
unreliable service

Q pipelined segments
0 cumulative ACKs

0 TCP uses single
retransmission timer

0 refransmissions are
triggered by:
« timeout events
<+ duplicate ACKs
Q initially consider
simplified TCP sender:
+ ignore duplicate ACKs

< ignore flow control,
congestion control

Transport Layer 3-59

TCP sender events:

data rcvd from app:

O create segment with
seq #

Q seq # is byte-stream

timeout:

Q retransmit segment
that caused timeout

a restart timer

number of first data
byte in segment

O start timer if not
already running (think
of timer as for oldest
unACKed segment)

O expiration interval:
TimeOutlnterval

ACK rcvd:

segments

be ACKed

Q if acknowledges
previously unACKed

+ update what is known to

% start timer if there are
outstanding segments

Transport Layer 3-60

NextSegqNum = InitialSegNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

+ SendBase-1: last
cumulatively
ACKed byte
Example:

+ SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
ACKed

Transport Layer 3-61

TCP: retransmission scenarios

@Hosf A Host B@

timeout

SendBase
=100

time

Se =
9292 8 bytes dats

e
X

loss

lost ACK scenario

I

S

£

=

N

x

S

(9]
Sendbase Jlr
=100 5
SendBase §
=120 £
N

o\

%_

(9]
SendBase 1

=120

time

premature timeout

Transport Layer 3-62

TCP retransmission scenarios (more)

SendBase
=120

timeout

Host A Host B

Se =
9292 8 bytes dats

=A0
Seq=1 00, 20 [\®}

X S datg

loss
120
AP\OK/

time

Cumulative ACK scenario

Transport Layer 3-63

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-64

TCP Selective ACKs [RFC 2018]

0 A non-mandatory extension to TCP
cumulative ACKs that is widely used

0 Selective ACK (SACK) allows receiver to
ACK a sequence of bytes in addition to
number of next expected byte

0 Use of SACK is negotiated during TCP
connection opening

+ uses TCP options field to convey sequence
number ranges

Transport Layer 3-65

Fast Retransmit

O time-out period often (O
relatively long:
+ long delay before
resending lost packet
O detect lost segments
via duplicate ACKs.

+ sender often sends
many segments back-to-

back

+ if segment is lost, there
will likely be many
duplicate ACKs for that

If sender receives 3
ACKs for same data, it
assumes that segment
after ACKed data was
lost:

+ fast retransmit: resend

segment before fimer
expires

segment
Transport Layer 3-66
Host A Host B
seq # x1
seq # x2
seq # x3\
seq # x4 X ACK x1
seq # x5 ACK x1
- ACK x1
ACK x1

triple

duplicaTe<—4{

ACKs

timeout

time

W

Transport Layer 3-67

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-68

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? 0O SampleRTT: measured time from
Q longer than RTT segment fransmission until ACK
< but RTT varies receipt
O too short: premature + ighore retransmissions
timeout 0 SampleRTT will vary, want
estimated RTT “smoother”

+ unnecessary
retransmissions + average several recent
measurements, not just

O too long: slow reaction
g current SampleRTT

to segment loss

Transport Layer 3-69

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
O Exponential weighted moving average

O influence of past sample decreases exponentially fast
Q typical value: a = 0.125

Transport Layer 3-70

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 ~

300 -~

N
a
S

TT (milliseconds)

o 200 -

150

100 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—&— SampleRTT —#— RTT

Transport Layer 3-71

TCP Round Trip Time and Timeout

Setting the timeout

O EstimatedRTT plus "safety margin”
« large variation in EstimatedRTT -> larger safety margin
O first estimate of how much SampleRTT deviates from

EstimatedRTT:

DevRTT = (1-B)*DevRTT +

B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

Then set timeout interval:

Timeoutinterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-72

Outline

Q 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
+ segment structure
+ reliable data transfer
+ flow control
<« connection management

Q 3.6 TCP congestion
control

Transport Layer 3-73

10

TCP Flow Control

flow control

. . sender won't overflow
Q receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast

(currently) lication d speea’-mafchlhg
unused buffer ., h
space process service. matching

send rate to receiving

application's drain rate

IP
datagrams

Q app process may be
slow at reading from
buffer

Transport Layer 3-74

TCP Flow control: how it works

O receiver: advertises

(currently)

IP lication

datagrams| " ome " process unused buffer space by
including rwna value in
«— rwnd —» segment header
+<— RevBuffer — L.
. Q sender: limits # of
(suppose TCP receiver unACKed bytes to rwnd
discards out-of-order + guarantees receiver's
segments) buffer doesn't overflow
0 unused buffer space:
= rwnd
= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 3-75

11

TCP Flow Control Example

0O Example: slow receiver
+ Recv buffer fills up and window shrinks to O
+ Send TCP learns of empty window and stops
+ Send buffer fills up with bytes from appl

process

+ Send TCP asks OS to block sender appl process
0 Once receiver catches up

« Window opens, Send TCP learns new window size

<« Send TCP resumes ftransmission

+ Send TCP buffer frees up

« Send TCP asks OS to unblock sender process

Transport Layer 3-76

Outline

Q 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

a 3.5 Connection-oriented
transport: TCP
+ segment structure
+ reliable data transfer
+ flow control
% connection management

Q 3.6 TCP congestion
control

Transport Layer 3-77

12

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

Q initialize TCP variables:

« seq. #s
« buffers, flow control
info (e.g. RevWindow)

Q client: connection initiator

Socket clientSocket = new
Socket("hostname", "port

number'™);

Q server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

+ specifies initial seq #
+ no data

Step 2: server host receives
SYN, replies with SYNACK
segment

« server allocates buffers

+ specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-78

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

close

ﬂggk client

close

d wait |

Q. time

server@

FIN

cK

2 close
/
m‘

Transport Layer 3-79

13

TCP Connection Management (cont.)

Step 3: client receives FIN, 18 client server [
replies with ACK. closing .

)

+ Enters “timed wait" - .
will respond with ACK

to received FINs / :
closing
Step 4: server, receives /
ACK. Connection closed.
Ack
NOTe- with SmCl” \

modification, can handle
simultaneous FINs.

d wait

closed

Q. time

closed ™

Transport Layer 3-80

TCP Connection Management (cont)

I, send 51N

Y
!
TIME_WAIT STN_SENT

" sand nothing

recefve FIN recene SYM & ACK
send ACK send ACK
FIN_WAIT_2 ESTnBIlSHED TCP server
,.»"I client applisation I 'fecyc Ie
receive ACH /" inkistas close connection
sendnothing ——{ FINJWAIT_1 fa—"send FIN . .Iﬂ]_ . er:;'::LTﬂfl:’:z:u
TCP client ondrating N\
lifecycle Y
f y LAST_ACK LISTEN
sand FIN --'I:':.-'.l..' - X

ESTABLISHED |&—

Transport Layer 3-81

14

Qutline

Q 3.1 Transport-layer
services

O 3.2 Multiplexing and
demultiplexing

Q 3.3 Connectionless
transport: UDP

Q 3.4 Principles of
reliable data transfer

a 3.5 Connection-oriented
transport: TCP
< segment structure
+ reliable data transfer
+ flow control
« connection management

Q 3.6 TCP congestion
control

Transport Layer 3-82

TCP congestion control:

Q goal: TCP sender should transmit as fast as possible,
but without congesting network
« Q: how fo find rate just below congestion level
0 decentralized: each TCP sender sets its own rate,
based on /implicit feedback:
+ ACK: segment received (a good thing!), network not
congested, so increase sending rate
+ Jost segment: assume loss due to congested
network, so decrease sending rate

Transport Layer 3-83

15

TCP congestion control: bandwidth probing

Q "probing for bandwidth": increase transmission rate
on receipt of ACK, until eventually loss occurs, then
decrease transmission rate

+ continue to increase on ACK, decrease on loss (since available
bandwidth is changing, depending on other connections in

network)

AC.KS being received, X loss, so decrease rate

so increase rate
D
g TCP's
e “sawtooth”
2 behavior
w

time

O Q: how fast to increase/decrease?

« details to follow Transport Layer 3-84

TCP Congestion Control: details

0 sender limits rate by limiting number
of unACKed bytes "in pipeline":
LastByteSent-LastByteAcked < cwnd
« cwnd: differs from rwnd (how, why?)

« sender limited by min(cwnd, rwnd) 5
CWI

Q roughly, bytes
_ cwnd
rate = RTT bytes/sec
. . . RTT
Q cwnd is dynamic, function of
perceived network congestion ACK(s)

Transport Layer 3-85

16

TCP Congestion Control: more details

ACK received: increase

a tart phase:

rease exponentially
t (despite name) at
nection start, or
lowing timeout

stion avoidance:
rease linearly

aggress
timeou

Transport Layer 3-86

TCP Slow Start

O when connection begins, cwnd =

1 MSs Host A Host B
« example: MSS = 500 bytes @ @
W

& RTT = 200 msec

« initial rate = 20 kbps
O available bandwidth may be >> w‘
MSS/RTT

+« desirable to quickly ramp up
to respectable rate

—RTT>

Ur segments
O increase rate exponentially
until first loss event or when
threshold reached
« double cwnd every RTT time

+ done by incrementing cwnd
by 1 for every ACK received

Transport Layer 3-87

17

Transitioning into/out of slowstart

ssthresh: cwnd threshold maintained by TCP
O on loss event: set ssthresh to cwnd/2

+ remember (half of) TCP rate when congestion last occurred
0O when cwnd >= ssthresh: transition from slowstart o congestion

avoidance phase

duplicate ACK

dupACKcount++ new ACK

A

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount =0

¥

timeout (/

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
m dupACKcount = 0
ransmit new segment(s),as allowed
cwnd > ssthresh |
A congestion
fimeout avoidance

ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Transport Layer 3-88

TCP: congestion avoidance

O when cwnd > ssthresh
grow cwnd linearly

< increase cwnd by 1
MSS per RTT

« approach possible
congestion slower
than in slowstart

<+ implementation: cwnd
= cwnd + MSS/cwnd
for each ACK received

— AIMD

< ACKs: increase cwnd
by 1 MSS per RTT:
additive increase

% loss: cut cwnd in half
(non-timeout-detected
loss): multiplicative
decrease

AIMD: Additive Increase
Multiplicative Decrease

Transport Layer 3-89

18

TCP congestion control FSM: overview

cwnd > ssthresh

loss:
3dupACK

loss:
new ACK 3dupACK

Transport Layer 3-90

TCP congestion control FSM: details

duplicate ACK
dupACKcount++ new ACK

‘cwnd = 1 MSS 1 MSS
ssthresh = 64 KB
dupACKcount =

tlmeout
ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount =0

retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

cwnd = cwnd+MSS

dupACKcount =0

transmit new segment(s),as allowed

cwnd > ssthresh
A

new ACK
cwnd = cwnd + MSS = (MSS/cwnd)
dupACKcount =0
transmit new segment(s),as allowed

timeout
“ssthresh = cwnd/2-
cwnd =1 MSS
dupACKcount = 0

timeout

ssthresh = cwnd/2

cwnd =

dupACKcount =0
retransmit missing segment

retransmit missing segment

duplicate ACK
dupACKcount++

New ACK

cwnd = ssthresh -
dupACKcount =0 M 3
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-91

19

Popular "flavours" of TCP

% TCP Reno
e 127
()]
[0}
g 10—
= ssthresh
IS R e
(2]
g e{ 4 4 ____.p
° ssthresh
C
- TCP Tahoe
c 2
5
0] I I [I

r 1T 1T 17 17 1T T T T1
01 2 34 5 6 7 8 910111213 1415

Transmission round

Transport Layer 3-92

Summary: TCP Congestion Control

0 when cwnd < ssthresh, sender in slow-start
phase, window grows exponentially.

O when cwnd >= ssthresh, sender is in congestion-
avoidance phase, window grows linearly.

O when triple duplicate ACK occurs, ssthresh set
to cwnd/2, cwnd set to ~ ssthresh

O when timeout occurs, ssthresh set to cwnd/2,
cwnd set to 1 MSS.

Transport Layer 3-93

20

Summary

Q principles behind transport layer services:
+ multiplexing, demultiplexing
<+ reliable data transfer
+ flow control
<+ congestion control
O instantiation and implementation in the Internet
« UDP
« TCP

Transport Layer 3-94

21

