
1

Outline

3.1 Transport-layer
services

3.5 Connection-oriented
transport: TCPservices

3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

transport TCP
segment structure
reliable data transfer
flow control
connection management

3.6 TCP congestion
control

Transport Layer 3-54

reliable data transfer control

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow

point-to-point:
one sender, one receiver f

in same connection
MSS: maximum segment
size

connection-oriented:
handshaking (exchange
of control msgs) init’s
sender receiver state

,
reliable, in-order byte
steam:

no “message boundaries”
pipelined:

TCP congestion and flow
control set window size

Transport Layer 3-55

sender, receiver state
before data exchange

flow controlled:
sender will not
overwhelm receiver

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

2

TCP segment structure

source port # dest port #

32 bits

sequence number

URG: urgent data
(generally not used)

ACK ACK #

counting
by bytes
of dataq m

acknowledgement number
Receive window
Urg data pointerchecksum

FSRPAUhead
len

not
used

Options (variable length)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

d)

bytes
rcvr willing
to accept

of data
(not segments!)

Transport Layer 3-56

application
data

(variable length)

commands)

Internet
checksum

(as in UDP)

TCP seq. #’s and ACKs
Seq. #’s:

byte stream
“number” of first

Host A Host B

User
tbyte in segment’s

data
ACKs:

seq # of next byte
expected from
other side
cumulative ACK

types
‘C’

host ACKs
receipt

host ACKs
receipt of
‘C’, echoes

back ‘C’

Transport Layer 3-57

cumulat ve A K
Q: how receiver handles

out-of-order segments
A: TCP spec doesn’t
say, - up to
implementer

p
of echoed

‘C’

time
simple telnet scenario

3

Outline

3.1 Transport-layer
services

3.5 Connection-oriented
transport: TCPservices

3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

transport TCP
segment structure
reliable data transfer
flow control
connection management

3.6 TCP congestion
control

Transport Layer 3-58

reliable data transfer control

TCP reliable data transfer

TCP creates rdt
service on top of IP’s

retransmissions are
triggered by:service on top of IP s

unreliable service
pipelined segments
cumulative ACKs
TCP uses single
retransmission timer

triggered by
timeout events
duplicate ACKs

initially consider
simplified TCP sender:

ignore duplicate ACKs
ignore flow control,

Transport Layer 3-59

ignore flow control,
congestion control

4

TCP sender events:
data rcvd from app:

create segment with
seq #

timeout:
retransmit segment
that caused timeoutq

seq # is byte-stream
number of first data
byte in segment
start timer if not
already running (think
of timer as for oldest

restart timer
ACK rcvd:

if acknowledges
previously unACKed
segments

update what is known to

Transport Layer 3-60

unACKed segment)
expiration interval:
TimeOutInterval

update what is known to
be ACKed
start timer if there are
outstanding segments

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

Comment:
• SendBase-1: last
cumulatively
ACKed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr

Transport Layer 3-61

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

y 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
ACKed

5

TCP: retransmission scenarios
Host A Host BHost A Host B

Se
q=

92
 t

im
eo

ut

loss

ti
m

eo
ut

X

m
eo

ut

SendBase

Sendbase
= 100

Transport Layer 3-62

time
premature timeout

lost ACK scenario
time

Se
q=

92
 t

im

SendBase
= 100

= 120

SendBase
= 120

TCP retransmission scenarios (more)
Host A Host B

loss

ti
m

eo
ut

X

SendBase
= 120

Transport Layer 3-63

Cumulative ACK scenario
time

6

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out of order segment

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK

Transport Layer 3-64

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

TCP Selective ACKs [RFC 2018]

A non-mandatory extension to TCP
cumulative ACKs that is widely usedcumulative ACKs that is widely used
Selective ACK (SACK) allows receiver to
ACK a sequence of bytes in addition to
number of next expected byte
Use of SACK is negotiated during TCP
connection openingconnection opening

uses TCP options field to convey sequence
number ranges

Transport Layer 3-65

7

Fast Retransmit

time-out period often
relatively long:

If sender receives 3
ACKs for same data, it relatively long

long delay before
resending lost packet

detect lost segments
via duplicate ACKs.

sender often sends
many segments back-to-
b k

ACKs for same data, it
assumes that segment
after ACKed data was
lost:

fast retransmit: resend
segment before timer
expires

Transport Layer 3-66

back
if segment is lost, there
will likely be many
duplicate ACKs for that
segment

Host A Host B

X

seq # x1
seq # x2
seq # x3
seq # x4 ACK x1seq # x4
seq # x5

ACK x1
ACK x1
ACK x1

triple
duplicate

ACKs

Transport Layer 3-67

ti
m

eo
ut

time

8

event: ACK received, with ACK field value of y
if (y > SendBase) {

Fast retransmit algorithm:

if (y > SendBase) {
SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y

Transport Layer 3-68

g q y
}

a duplicate ACK for
already ACKed segment

fast retransmit

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
l h RTT

Q: how to estimate RTT?
SampleRTT: measured time from
segment transmission until ACK longer than RTT

but RTT varies
too short: premature
timeout

unnecessary
retransmissions

too long: slow reaction

segment transmission until ACK
receipt

ignore retransmissions
SampleRTT will vary, want
estimated RTT “smoother”

average several recent
measurements, not just
current SampleRTT

Transport Layer 3-69

to segment loss current SampleRTT

9

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exp n nti l i ht d m in Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

Transport Layer 3-70

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

200

250

300

RT
T

(m
ill

ise
co

nd
s)

Transport Layer 3-71

100

150

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

SampleRTT Estimated RTT

10

TCP Round Trip Time and Timeout

Setting the timeout
EstimatedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically β = 0 25)

Transport Layer 3-72

TimeoutInterval = EstimatedRTT + 4*DevRTT

(typically, β = 0.25)

Then set timeout interval:

Outline

3.1 Transport-layer
services

3.5 Connection-oriented
transport: TCPservices

3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

transport TCP
segment structure
reliable data transfer
flow control
connection management

3.6 TCP congestion
control

Transport Layer 3-73

reliable data transfer control

11

TCP Flow Control

receive side of TCP
connection has a

sender won’t overflow
receiver’s buffer by

transmitting too much

flow control

connection has a
receive buffer:

speed-matching
service: matching
send rate to receiving
application’s drain rate

transmitting too much,
too fast

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application
process

Transport Layer 3-74

application s drain rate

app process may be
slow at reading from
buffer

TCP Flow control: how it works
receiver: advertises
unused buffer space by

l d l

IP
datagrams

TCP data
(in buffer)

(currently)
unused buffer

space

application
process

(suppose TCP receiver
discards out-of-order
segments)

d b ff

including rwnd value in
segment header
sender: limits # of
unACKed bytes to rwnd

guarantees receiver’s
buffer doesn’t overflow

rwnd
RcvBuffer

Transport Layer 3-75

unused buffer space:
= rwnd
= RcvBuffer-[LastByteRcvd -

LastByteRead]

12

TCP Flow Control Example
Example: slow receiver

Recv buffer fills up and window shrinks to 0Recv buffer fills up and window shrinks to 0
Send TCP learns of empty window and stops
Send buffer fills up with bytes from appl
process
Send TCP asks OS to block sender appl process

Once receiver catches upp
Window opens, Send TCP learns new window size
Send TCP resumes transmission
Send TCP buffer frees up
Send TCP asks OS to unblock sender process

Transport Layer 3-76

Outline

3.1 Transport-layer
services

3.5 Connection-oriented
transport: TCPservices

3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

transport TCP
segment structure
reliable data transfer
flow control
connection management

3.6 TCP congestion
control

Transport Layer 3-77

reliable data transfer control

13

TCP Connection Management
Recall: TCP sender, receiver

establish “connection”
before exchanging data
segments

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
initialize TCP variables:

seq. #s
buffers, flow control
info (e.g. RcvWindow)

client: connection initiator
Socket clientSocket = new
Socket("hostname","port

specifies initial seq #
no data

Step 2: server host receives
SYN, replies with SYNACK
segment

server allocates buffers
s ifi s s i iti l

Transport Layer 3-78

number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

TCP Connection Management (cont.)

Closing a connection: client server

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

St 2

close

close

it

Transport Layer 3-79

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN. closed

ti
m

ed
 w

ai

14

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK

client server
replies with ACK.

Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

closing

closing

it

Transport Layer 3-80

Note: with small
modification, can handle
simultaneous FINs.

closed
ti

m
ed

 w
ai

closed

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Transport Layer 3-81

15

Outline

3.1 Transport-layer
services

3.5 Connection-oriented
transport: TCPservices

3.2 Multiplexing and
demultiplexing
3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

transport TCP
segment structure
reliable data transfer
flow control
connection management

3.6 TCP congestion
control

Transport Layer 3-82

reliable data transfer control

TCP congestion control:
goal: TCP sender should transmit as fast as possible,
but without congesting network

Q h t fi d t j t b l ti l lQ: how to find rate just below congestion level
decentralized: each TCP sender sets its own rate,
based on implicit feedback:

ACK: segment received (a good thing!), network not
congested, so increase sending rate
lost segment: assume loss due to congested

Transport Layer 3-83

network, so decrease sending rate

16

TCP congestion control: bandwidth probing

“probing for bandwidth”: increase transmission rate
on receipt of ACK, until eventually loss occurs, then
decrease transmission rate decrease transmission rate

continue to increase on ACK, decrease on loss (since available
bandwidth is changing, depending on other connections in
network)

ACKs being received,
so increase rate

X

X
X

X loss, so decrease rate

ra
te

TCP’s

Transport Layer 3-84

X

se
nd

in
g

r

time

Q: how fast to increase/decrease?
details to follow

TCP s
“sawtooth”
behavior

TCP Congestion Control: details

sender limits rate by limiting number
of unACKed bytes “in pipeline”:of unACKed bytes in pipeline

cwnd: differs from rwnd (how, why?)
sender limited by min(cwnd,rwnd)

roughly,

rate = cwnd
RTT bytes/sec

LastByteSent-LastByteAcked ≤ cwnd

cwnd
bytes

Transport Layer 3-85

cwnd is dynamic, function of
perceived network congestion

RTT
RTT

ACK(s)

17

TCP Congestion Control: more details

segment loss event:
reducing cwnd

ACK received: increase
cwndg

timeout: no response
from receiver

cut cwnd to 1
3 duplicate ACKs: at
least some segments
getting through (recall

cwnd

slowstart phase:
increase exponentially
fast (despite name) at
connection start, or
following timeout

congestion avoidance:

Transport Layer 3-86

getting through (recall
fast retransmit)

cut cwnd in half, less
aggressively than on
timeout

increase linearly

TCP Slow Start
when connection begins, cwnd =
1 MSS

example: MSS = 500 bytes
Host A Host B

example: MSS 500 bytes
& RTT = 200 msec
initial rate = 20 kbps

available bandwidth may be >>
MSS/RTT

desirable to quickly ramp up
to respectable rate

increase rate exponentially

RT
T

Transport Layer 3-87

increase rate exponentially
until first loss event or when
threshold reached

double cwnd every RTT
done by incrementing cwnd
by 1 for every ACK received

time

18

Transitioning into/out of slowstart
ssthresh: cwnd threshold maintained by TCP

on loss event: set ssthresh to cwnd/2
remember (half of) TCP rate when congestion last occurredremember (half of) TCP rate when congestion last occurred

when cwnd >= ssthresh: transition from slowstart to congestion
avoidance phase

cwnd > ssthresh

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s),as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS
th h 64 KB

Transport Layer 3-88

slow
start timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Λ
cwnd > ssthreshssthresh = 64 KB

dupACKcount = 0 congestion
avoidance

TCP: congestion avoidance

when cwnd > ssthresh
grow cwnd linearly ACK i d

AIMD
grow c d linearly

increase cwnd by 1
MSS per RTT
approach possible
congestion slower
than in slowstart
implementation: cwnd

ACKs: increase cwnd
by 1 MSS per RTT:
additive increase
loss: cut cwnd in half
(non-timeout-detected
loss): multiplicative
d

Transport Layer 3-89

implementation: cwnd
= cwnd + MSS/cwnd
for each ACK received

decrease

AIMD: Additive Increase
Multiplicative Decrease

19

TCP congestion control FSM: overview

slow
start

congestion
avoidance

cwnd > ssthresh

loss:
timeout

l l

loss:
timeout

Transport Layer 3-90

fast
recovery

loss:
timeout

new ACK loss:
3dupACK

loss:
3dupACK

TCP congestion control FSM: details

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s),as allowed

new ACK
cwnd = cwnd + MSS (MSS/cwnd)

dupACKcount = 0
transmit new segment(s),as allowed

new ACK.
dupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS

slow
start

congestion
avoidance timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Λ
cwnd > ssthresh

dupACKcount++
duplicate ACK

dupACKcount == 3d ACK t 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment cwnd = ssthresh

New ACK

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

Transport Layer 3-91

fast
recovery

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3 retransmit missing segment

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

c d sst es
dupACKcount = 0

20

Popular “flavours” of TCP

TCP Renoen
ts

)

ssthresh

ssthresh

TCP Tahoe

n
d

w
in

do
w

 s
iz

e
(in

 s
eg

m
e

Transport Layer 3-92

Transmission round

c
w
n

Summary: TCP Congestion Control

when cwnd < ssthresh, sender in slow-start
h s i d s ti llphase, window grows exponentially.

when cwnd >= ssthresh, sender is in congestion-
avoidance phase, window grows linearly.

when triple duplicate ACK occurs, ssthresh set
to cwnd/2, cwnd set to ~ ssthresh

Transport Layer 3-93

when timeout occurs, ssthresh set to cwnd/2,
cwnd set to 1 MSS.

21

Summary
principles behind transport layer services:

multiplexing, demultiplexing
reliable data transfer
flow control
congestion control

instantiation and implementation in the Internet
UDP
TCP

Transport Layer 3-94

TCP

