
Operating systems II
 CS 2506

Dr. Dan Grigoras
Computer Science Department

07/01/2011 2

System architecture

•

What is the relationship between the
applications/programs and “the computing
system”

?

•

How can a user program access services
of the operating system ?

•

What is a process ?
•

What is a thread and why it is useful ?

07/01/2011 3

Library
functions
Library

functions

User
program
User

program

Library
functions
Library

functions

Library
functions
Library

functions

User
program
User

program

User
program
User

program

OS kernel
Process management

Memory management
Network services

File sys management
Device drivers

Hardware
CPU, memory, buses, disks, keyboard, mouse, NIC, printer,…

User

07/01/2011 4

Layers
•

The bottom layer is the hardware; it accepts primitive
commands such as “seek the disk arm to track 79, select
head 3 and read sector 5”. Software that interacts directly
with the hardware is non-portable and contains low level
details: control and state registers, interrupt priorities, DMA
starting address,…

•

The kernel has several key components:
–

Device drivers are the hardware units managers; they hide the low
level details.

–

File sys manager is the code that organises the data storage into
files and directories, hiding low level details re disk blocks, for
example.

–

Process management handles processes, allocating them resources
and scheduling their execution.

–

Memory management is responsible for physical memory and virtual

memory management.

–

Network services provide host-to-host and process-to-process
communication across network.

07/01/2011 5

Kernel services
•

The kernel can be viewed as a collection of functions that
user programs may call. They offer functionality and a
higher level of abstraction of the computer.

•

The repertoire of commands supported by the kernel
defines the “virtual machine”

which is platform-

 independent.
•

To enter the kernel, the user program makes a system call
by executing a trap instruction of some sort.

•

This instruction switches the processor into a privileged
operating mode (kernel mode) and jumps into the kernel
through a well-defined trap address.

•

Parameters passed with the trap instruction tell the kernel
what service is requested.

•

When the function is completed, the processor flips back to
its normal operating mode (user mode) and returns control
to the user program.

Trap instructions
•

There are functions that require specific knowledge of
handling resources –

control registers, state register,

sequence of operations, and a certain degree of
protection –

resources shared by several

users/programs.
•

These functions are coded as service routines; they are
also known as system calls.

•

The sequence of steps for a system call is:
–

System call is invoked by the user program;
–

OS function is performed;
–

Control returns to the user program

•

Trap instructions are used to implement system calls.

07/01/2011 6

TRAP Mechanism
•

A set of service routines.
–

part of the kernel --

routines start at arbitrary addresses

up to 256 routines

•

Table of service routines starting addresses.
–

stored at x0000

through x00FF

in memory
–

called System Control Block

in some architectures

•

TRAP instruction.
–

used by program to transfer control to operating system
–

8-bit trap vector names one of the 256 service routines

•

Return to the user program.
–

execution of user program will resume immediately after the TRAP

instruction. Generally, the return address is saved in a CPU general
register.

07/01/2011 7

07/01/2011 8

Library functions
•

User programs have access to libraries and
include in their code functions of these libraries
–

linked in the executables.

•

Some library functions use system calls. The
function itself parcels up the parameters
correctly and then performs the trap.

•

The function works as a wrapper for the system
call.

•

Example:

printf(“hello

world”); write(1, “hello world”, 11);

OS classes
•

The large range of computing devices
requires customized OS.

•

General purpose computers run powerful
OS: Unix, Linux, Windows,...

•

Mobile devices, such as smart phones or
sensors, run OS concerned with power
saving: Symbian, iPhone

OS, Android,

TinyOS,...
•

Embedded systems run scaled down
versions of OS, event-driven.

07/01/2011 9

07/01/2011 10

Process
•

Process definitions:
–

an instance of a running program;

–

a process is the context associated with a program in
execution.

•

The context represents state information:
–

program variables/values, stored in the user space;

–

management information such as process ID, priority,
owner, current directory, open file descriptors, etc.
stored in the kernel space

•

The process consists of the executable
(instructions), its data and administrative
(management) information.

07/01/2011 11

code
Instruction
pointer

data

Main memory

admin
data

……..

……

stackStack
pointer

…….

Process
context

Process representation in the main memory.

07/01/2011 12

Main components of process context
•

Process ID = unique integer value
•

Parent process ID
•

Real user ID = the id of the user who started this process
•

Effective user ID = user whose rights are carried (normally the same as
above)

•

Current directory = the start directory for looking up relative pathnames
•

File descriptor table = table

with data about all input/output streams opened
by the process. It is indexed by an integer value called file descriptor.

•

The environment = list of strings VARIABLE = VALUE used to customize the
behaviour

of certain programs.
•

Code area
•

Data area
•

Stack
•

Heap
•

Priority
•

Signal disposition = masks indicating which signals are awaiting

delivery,
which are blocked.

•

umask

= mask value used to ensure that specified access permissions are not
granted when this process creates a file.

07/01/2011 13

Process management
•

Create –

the internal representation of the process is

created; initial resources are allocated; initialize the
program that is to run the process.

•

Terminate –

release all resources; possibly inform other
processes of the end of this one.

•

Change program –

the process replaces the program it
is executing (by calling exec).

•

Set process parameters –

e.g., priority.
•

Get process parameters –

e.g., CPU time so far

•

Block –

wait an event, the completion of an I/O
operation.

•

Awaken process –

after waiting, the process can run
again.

•

Switch process –

process

context switching.
•

Schedule process –

takes control of the CPU.

07/01/2011 14

Child process
•

A process can create a child process, identical to it, by calling fork() –

Unix
function. As the kernel creates a copy of the caller, two processes will return
from this call.

•

The parent and the child will continue to execute asynchronously,
competing for CPU time shares.

•

Generally, users want the child to compute something different from the
parent. The fork() returns the child ID to the parent, while it returns 0 to the
child itself. For this reason, fork() is placed inside an if test.

•

Example:

int

i;
if (fork()) { /* must be the parent */

for (i=0; i<1000; i++)
printf(“\t\t\tParent

%d\n”, i);
}
else { /* must be the child */

for (i=0; i<1000; i++)
printf(“Child

%d\n”, i);
}

•

Question: in what order will the two strings be printed ?

07/01/2011 15

running

blocked ready

1

2

3
4

Process states

Presenter
Presentation Notes
Switching processes between running and ready is time and resource consuming.

07/01/2011 16

Thread
•

A thread is known as a lightweight process; within a
process we can have one (process ≡

thread) or more

threads.
•

All threads share the process context, including code.

•

The context private to each thread is represented by the
registers file and stack, the priority and own id.

•

Generally the thread switch within the process is handled
by the thread library, without calling the kernel. It is very
fast as thread context is minimum.

•

When a process starts execution, a single thread is
executed, which begins executing the main() function of
the program. It will continue so until new threads are
created:

thread_create(char

*stack, int

stack_size, void (*func)(),
void *arg);

Presenter
Presentation Notes
The first two arguments specify the location and size of the stack available to the new thread (allocated from the heap)

func indicates where the thread execution should start. Arg is passed as an argument to the function. It’s used to make distinction among multiple threads running the same function, or to locate the data on which they operate.

07/01/2011 17

Advantages/disadvantages
•

Threads provide concurrency in a program. This can be
exploited by multicore

computers.

•

Concurrency corresponds to many programs internal
structure.

•

If a thread changes directory, all threads in the process
see the new current directory.

•

If a thread closes a file descriptor, it will be closed in all
threads.

•

If a thread calls exit(), the whole process, including all its
threads, will terminate.

•

If a thread is more time consuming than others, all other
threads will starve of CPU time.

07/01/2011 18

Course goals and methodology
•

Goals
–

to learn how processes and threads are managed, including
scheduling.

–

to learn memory, physical and virtual, management.
–

to learn about device drivers.
–

to learn about file management system.
•

Methodology
–

attending the lectures.
–

carrying out the lab work and assigned work.
–

using recommended references to learn more about specific
topics.

•

Text book
–

Silberschatz, Galvin, Gagne: Operating Systems Concepts with
Java, Int

Student Edition, John Wiley &Sons, 2011, isbn: 978-0-

470-39879-1.

07/01/2011 19

Course philosophy:
Collaborative learning process

www.cs.ucc.ie/~grigoras/CS2506

Grading Continuous assessment:

20%
 1. 10 Labs

2. In-class test
Written exam:

90 min

80%

Lecture

50 min + 5 min review & questions

Contact

Office:

G69, Western Gateway Bldg
Email:

d.grigoras@cs.ucc.ie, Subject: CS2506
Office hours: by appointment

http://www.cs.ucc.ie/~grigoras/CS2506

	Operating systems II�CS 2506
	System architecture
	Slide Number 3
	Layers
	Kernel services
	Trap instructions
	TRAP Mechanism
	Library functions
	OS classes
	Process
	Slide Number 11
	Main components of process context
	Process management
	Child process
	Slide Number 15
	Thread
	Advantages/disadvantages
	Course goals and methodology
	Course philosophy: �Collaborative learning process�www.cs.ucc.ie/~grigoras/CS2506�

