
Lecture 2

Process scheduling

07/01/2011 2

• How does a process get the control of the
CPU ?

• What strategies are in use for scheduling ?
• Can the scheduling parameters be

modified dynamically ?
• What means multi-core scheduling ?

07/01/2011 3

Purpose of scheduling
• Historically, the CPU was allocated to one process until

its completion – known as batch processing. Then, the
CPU was time-shared by multiple processes ready to
execute.

• As CPU is time-shared, processes compete for the next
available time slot.

• The scheduler implements an algorithm that decides
which process gets the CPU next.

• The scheduling process needs to be fair to all processes.
• Processes ready to execute are organized in a queue

from where the scheduler selects the next one.
• A process takes control of the CPU by having its state

restored, while the state of the previous process is
saved.

07/01/2011 4

First-come first-served / round
robin

• FCFS is the simplest algorithm: processes are getting
CPU control in their order in the ready-to-execute queue.

• One possibility is to have the control of the CPU until the
process finishes - non-preemptive execution. This may
lead to starvation of other processes.

• Therefore, the best solution is to time-share the CPU.
• If a process is not finished during its time slice, it will be

returned at the end of the queue.
• Other possibilities to be switched from the running state

are:
– an I/O operation that will put the process in the blocked queue;
– it suspends itself until a certain event occurs;
– a higher priority process requires control.

07/01/2011 5

Shortest process first
• If the CPU is not time-shared, the order in which

processes are scheduled is important.
• Processes can be ordered according to their execution

time.
• If processes get control in the decreasing order of their

execution time, the average turnaround time is better
than in the random order.

• The turnaround time is the time consumed from the
moment the process is ready for execution until its
completion.

• Example: 3 processes, a(35), b(40), c(15).
– ta = 35, tb = 75, tc = 90 taa = 200/3
– In decreasing order of execution time: tc = 15, ta = 50, tb = 90,

taa =155/3

07/01/2011 6

Priority scheduling
• Processes are different, some of them are interactive, others are

computing demanding and therefore need to be dealt with differently in
order to provide system responsiveness.

• One solution is to assign priorities to processes. Fast, interactive
processes will have higher priorities than computation strong ones.

• Moreover, priority can be changed at runtime according to the process
behaviour; if a process takes too long to complete, its priority will be
lowered.

• Priority is denoted by a small integer, generally a smaller value
indicating a higher priority.

• Obviously, kernel processes have higher priorities than user processes.
• The priority of user processes is given considering the user or process

attributes.
• If there are several processes with the same priority, they are

scheduled in a round robin manner.
• Many systems have an idle process, which has the lowest priority.

When there is no other process to execute, the CPU is given to the idle
process that switches the system into sleep state(-s).

07/01/2011 7

A process for power management
• The kernel power policy manager owns the

decision-making and the set of rules used to
determine the appropriate frequency/voltage
operating state. It may make decisions based on
several inputs, such as end-user power policy,
processor utilization, battery level, or thermal
conditions and events.

• The processor driver is used to make actual
state transitions on the kernel power policy
manager’s behalf.

07/01/2011 8

Priority scheduling :
 multilevel feedback queues

• This is one implementation of dynamic priorities.
• Initially, a process gets a priority that puts it on a

certain level.
• After each time slice, the priority is lowered to

the next level, until it reaches the lowest
acceptable priority. At that level, the strategy is
round robin.

• However, after being blocked, the process gets
a higher priority (priority boost). Consequently,
during its existence, one process can have a
priority that varies within a defined range.

07/01/2011 9

Priority

24

10

5

2

1

Multilevel feedback queue

highest

lowest

07/01/2011 10

Adjusting scheduling parameters
• Dynamic priorities allow to avoid process

starvation when, for example, a medium-level
priority process is computation strong and never
blocks. Lower priorities processes will starve
waiting for their time slice. In this case, their
priorities can be raised at the medium or even
higher level.

• The time slice (quantum) can be different for
each priority level. For example, the highest
priority level will have the shortest time slice, and
then this can be increased exponentially for
lower level priorities; if the base quantum is q,
level I will have the time slice 2iq.

07/01/2011 11

Two-level scheduling
• Sometimes, there are too many processes that

can’t fit in the main memory in the same time.
Therefore some will have to be stored on the
disk. However the process of restoring the
process in the main memory while other(-s) are
saved on the disk is time consuming (can lead to
the thrashing phenomenon).

• One solution is to use two-level scheduling:
– a higher-level, long-term scheduler that runs more

slowly will select the subset of processes resident in
the main memory;

– these processes are then managed by a different
scheduler, lower-level and short-term.

07/01/2011 12

Real-time scheduler
• In real-time applications, computing systems react to events signalled by

interrupts. The interrupt triggers the scheduler to give control to the
respective event handler.

• If more than one occurs in the same time, priority and deadlines are
considered. For example, if a new event has a higher priority or a tighter
time requirement than the current running process, then the scheduler will
preempt the exiting one.

• One popular techniques is earliest deadline first (EDF). For each process,
there is an attribute value that indicates the time by which it should be
completed.

• The scheduler always selects the process with the earliest deadline. After
the process used its time slice, the deadline is updated and the process is
added to the ready list.

• Generally, the new deadline is computed by adding a constant period to the
time at which the time slice ended.

• Example: time slice = 100 ms and three processes, a with const period of
300 ms, b with 500 ms and c with 1000ms.
All are ready at t = 0 and have deadlines equal to their periods.
a is selected first, its next deadline is 400ms which makes it the next
candidate. Then, the deadline is 200 + 300 = 500 ms, after b. b is scheduled
and its new deadline is 300 + 500 = 800 ms,…

07/01/2011 13

Multi-core systems
• The main challenge before the scheduler is to identify and

predict the resource needs of each process and schedule
them in a fashion that will minimize shared resource
contention, maximize shared resource utilization, and exploit
the advantage of shared resources between cores. To
achieve this, the process scheduler needs to be aware of
multi-core, shared resource topology, resource requirements
of processes, and the inter-relationships between the
processes. For example, the 2.6 Linux* kernel process
scheduler introduced a concept called scheduling domains to
incorporate the platform topology information into the
process scheduler.

• Example: 2-packages, dual-core each package system. If the
application has two processes (or threads), they can be
allocated to different packages, minimising contentions.
However, power saving would require to have both allocated
to the same package.

07/01/2011 14

Multi-core topologies: IBM
Power5 model

Core 0 Core 1

Cache L2

Fabric Controller

Memory Controller

Cache L3

Memory

Core 0 Core 1

Cache L2

Fabric Controller

Memory Controller

Memory

Cache L3

This is an example of SMP – symmetric multi-processor.

Presenter
Presentation Notes
Power5 systems support 64 physical processors.

The L2 cache is implemented as three identical slices with separate controllers for each. Its size is 4MB.

If the package would have 4 cores, L2 would be 8 MB.

The degree of cache associativity is increasing with the increase in cache size, leading to hit rate improvement and better utilization.

The L3 cache operates as a backdoor with separate buses for reads and writes that operate

at half processor speed.

07/01/2011 15

Aspects to consider
• Contention and its impact on performance depend on the

resources shared, the number of active processes, and the
access patterns of the individual processes.

• Heterogeneous data access patterns of memory-intensive
processes running on the cores sharing caches can lead to
cache contention and sub-optimal performance.

• A fair amount of CPU time allocated to each process by the
process scheduler will not essentially translate into efficient
and fair usage of the shared resources.

• If processes share data, it makes sense to schedule them
on same package cores.

• Otherwise, scheduling on one package will lead to L2
contention; the benefit is power saving from idle packages
that can switch both cores and L2 cache to sleep states.

• Scheduling processes on cores of different packages
maximises execution speed but it’s not optimal in respect to
energy.

07/01/2011 16

Process group scheduling
• If all the running processes are resource intensive, the challenge before

the process scheduler is to identify the processes that share data and
schedule them on the cores sharing the L2 cache. This will help
minimize the shared resource contentions and shared data duplication.
This will also result in efficient data communication between the
processes that share data.

• The system software has some inherent knowledge about data sharing
between processes. For example, threads belonging to a process share
the same address space and as such share everything (text, data, heap,
etc.). Similarly, processes attached to the same shared memory
segment will share the data in that segment.

• The process scheduler can do optimizations such as grouping threads
belonging to a process or grouping processes attached to the same
shared memory segment and co-schedule them in the cores sharing the
package resources.

• In a scenario where all the shared resources and packages are busy, the
process scheduler needs to minimize the resource contention for
exploiting optimal performance. For example, grouping CPU-intensive
and memory-intensive processes onto the cores sharing the same L2
cache will result in minimized cache contention.

07/01/2011 17

Prediction of resource use
• Process characteristics and behaviour can be predicted

using the micro-architectural history of a process by
using performance counters. In the absence of such
micro-architectural information, the system software can
also use some heuristics to estimate the resource
requirements. For example, one can use the number of
physical pages that are accessed (using the Accessed
bit in the page tables that manage virtual to physical
address translation in x86 architecture) for certain
intervals or use the processes memory Resident Set
Size (RSS). The process scheduler can use this
information and group schedule processes on the cores
residing in a physical package with the goal of
minimizing shared resource contention.

07/01/2011 18

Scheduling domains
• In a multi-core system, one goal of the scheduler is to balance the cores’

load such that there is no idle core while other cores are overloaded.
• The domain-based scheduler aims to solve this problem by way of a new

data structure which describes the system's structure and scheduling
policy in sufficient detail that good decisions can be made.
– a scheduling domain (struct sched_domain) is a set of cores which share

properties and scheduling policies, and which can be balanced against each
other. Scheduling domains are hierarchical; a multi-level system will have
multiple levels of domains.

– each domain contains one or more core groups (struct sched_group) which
are treated as a single unit by the domain. When the scheduler tries to
balance the load within a domain, it tries to even out the load carried by each
core group without worrying directly about what is happening within the
group.

• Each scheduling domain contains policy information which controls how
decisions are made at that level of the hierarchy. The policy parameters
include how often attempts should be made to balance loads across the
domain, how far the loads on the component processors are allowed to
get out of sync before a balancing attempt is made, how long a process
can sit idle before it is considered to no longer have any significant
cache affinity, and various policy flags.

07/01/2011 19

Policy examples
• When a process calls exec() to run a new program, its current cache affinity is

lost. At that point, it may make sense to move it elsewhere. So the scheduler
works its way up the domain hierarchy looking for the highest domain which
has the SD_BALANCE_EXEC flag set. The process will then be shifted over to
the CPU within that domain with the lowest load. Similar decisions are made
when a process forks.

• If a processor becomes idle, and its domain has the SD_BALANCE_NEWIDLE
flag set, the scheduler will go looking for processes to move over from a busy
processor within the domain.

• If one processor in a shared pair is running a high-priority process, and a low-
priority process is trying to run on the other processor, the scheduler will
actually idle the second processor for a while. In this way, the high-priority
process is given better access to the shared package.

• The last component of the domain scheduler is the active balancing code,
which moves processes within domains when things get too far out of balance.
Every scheduling domain has an interval which describes how often balancing
efforts should be made; if the system tends to stay in balance, that interval will
be allowed to grow. The scheduler "rebalance tick" function runs out of the
clock interrupt handler; it works its way up the domain hierarchy and checks
each one to see if the time has come to balance things out. If so, it looks at the
load within each CPU group in the domain; if the loads differ by too much, the
scheduler will try to move processes from the busiest group in the domain to
the most idle group. In doing so, it will take into account factors like the cache
affinity time for the domain.

07/01/2011 20

Active balancing
• Active balancing is especially necessary when CPU-hungry processes

are competing for access to a hyperthreaded processor. The scheduler
will not normally move running processes, so a process which just
cranks away and never sleeps can be hard to dislodge. The balancing
code, by way of the migration threads, can push the CPU hog out of the
processor for long enough to allow it to be moved and spread the load
more widely.

• When the system is trying to balance loads across processors, it also
looks at a parameter kept within the sched_group structure: the total
"CPU power" of the group. Hyperthreaded processors look like
independent CPUs, but the total computation power of a pair of
hyperthreaded processors is far less than that of two separate packages.
Two separate processors would have a "CPU power" of two, while a
hyperthreaded pair would have something closer to 1.1. When the
scheduler considers moving a process to balance out the load, it looks at
the total amount of CPU power currently being exercised. By maximizing
that number, it will tend to spread processes across physical processors
and increase system throughput.

Presenter
Presentation Notes
Hyper-threading is an Intel-proprietary technology used to improve parallelization of computations (doing multiple tasks at once) performed on PC microprocessors. For each processor core that is physically present, the operating system addresses two virtual processors, and shares the workload between them when possible. Hyper-threading requires only that the operating system support multiple processors, and Intel recommends disabling HTT when using operating systems that have not been optimized for the technology.

07/01/2011 21

Conclusions
• Scheduling is one of the most important

functions of the kernel.
• Its algorithm is dictated by the nature of

the applications run by that computer.
• Scheduler’s parameters can sometime be

modified dynamically.
• All processes need to be treated fairly.
• Multi-core schedulers are more complex

software that consider system topology
and processes behaviour.

07/01/2011 22

References
• Brian L. Stuart, Principles of Operating

Systems, 2009, Thomson Learning.
• http://www.intel.com/technology/itj/2007/v1

1i4/9-process/2-intro.htm
• http://lwn.net/Articles/80911/

http://www.intel.com/technology/itj/2007/v11i4/9-process/2-intro.htm
http://www.intel.com/technology/itj/2007/v11i4/9-process/2-intro.htm

	Lecture 2
	Slide Number 2
	Purpose of scheduling
	First-come first-served / round robin
	Shortest process first
	Priority scheduling
	A process for power management
	Priority scheduling :�multilevel feedback queues
	Slide Number 9
	Adjusting scheduling parameters
	Two-level scheduling
	Real-time scheduler
	Multi-core systems
	Multi-core topologies: IBM Power5 model
	Aspects to consider
	Process group scheduling
	Prediction of resource use
	Scheduling domains
	Policy examples
	Active balancing
	Conclusions
	References

