
Lecture 3

Examples of process
management systems

21/01/2011 2

Few questions…

• How does UNIX manage
processes/threads ?

• Is Win NT very different from UNIX ?
• How different can a sensor OS be ?
• What is the lifecycle of an Android

application ?

21/01/2011 3

1. UNIX
• For each program commanded to execute, a process is

created. All processes are created by other ones, except
the very first one started after the system is booted.

• By calling fork(), a new process is created, copy of the
calling process.

• A call to exec() replaces the code of the existing program
with a new one.

• A process can voluntarily terminate by calling exit().
• Another possibility to terminate a process is to invoke kill()

from another process (with appropriate privileges).
• When a parent process is ready to pause until a child

process has finished and to pick up the child’s exit status,
it does so by calling wait().

21/01/2011 4

Process states
• Beside running, blocked and ready, there are few

additional states:
• SSLEEP – a blocked state where the process cannot be

awakened by a signal;
• SWAIT – a blocked state that allows the process to be

awakened to handle a signal;
• SRUN – the SRUN value identifies running and ready

processes; the u variable contains the process table info
of the currently running process.

• SIDL – a process is created but the copy of its parent’s
memory space can not be done immediately.

• SZOMB – a child process that exits before the parent
makes the call wait(),…the child process will still exist at
some level.

• SSTOP – this state is used to identify a process (child)
that is being traced (by its parent).

21/01/2011 5

Process table
• There are few flags recording the status of the

process in respect to memory (the process is in
memory or swapped out) and tracing.

• The process table is divided in two.
– the first part is an array of structures (proc). These

structures hold admin info, state info, id, scheduling
info.

– other data is not needed when the process is
swapped out. They are stored in the user structure,
part of the data segment. User structures are
swapped along with the rest of the process’s memory
space.

21/01/2011 6

Scheduling
• The scheduler uses process priorities. The actual

scheduling code is in the context switching function
swtch(). It searches the process table for the highest
priority process in memory.

• Processes migrate between memory and disk under the
control of the function sched().

• Swtch() and sched() represent a two-level scheduler.
• Periodically, the priority of each process is updated:

• Where c is a cumulative CPU usage since the process was
last swapped into memory. n is a parameter called nice. If
nice increases, the priority lowers.

)100
16

,127min(ncp ++=

21/01/2011 7

2. Win NT
• At the most coarse-grained level, we have jobs; a job is

a set of processes that share certain process
management parameters.

• Processes in Win NT are sets of one or more threads
that all share a common memory space.

• Threads are the units of execution that are scheduled
and managed.

• The CreateProcess() Win 32 call creates a new process
and implicitly a new thread. The call takes as argument
the name of the program to run in the newly created
process.

• createThread() starts a thread from the mentioned
function of the process.

• ExitProcess() and ExitThread() terminate processes and
threads respectivily.

21/01/2011 8

Thread state

Running

Standby

Terminated

Waiting Ready

Transition

Initialized

21/01/2011 9

Win NT scheduling
• It uses a multilevel feedback queue with 32 priority levels.
• The lowest, 0, is reserved for a special kernel thread that clears free memory

pages.
• Levels 1 – 15 are dynamic levels: are allocated to application threads.
• Levels 16 – 31 are real-time levels. They are not real-time in the sense of

guaranteed response time or in terms of scheduling by deadline. They provide
a higher priority level than normal applications and a more predictable
response because they are not dynamically adjusted by the system.

• Additionally, threads may have a different value of quantum (CPU time slice). It
can vary from 20 ms to 120 ms for foreground threads (belong to processes
that own the window).

• Generally, threads keep the same priority level during execution. However, in
certain circumstances, the priority is increased, after which decays back in a
stairstep fashion:

– when the thread is moved into Ready after an I/O operation;
– after waiting on an executive event or semaphore, the level in incremented by one;
– a foreground thread that owns a window after unblocking;
– threads that own windows when they move to Ready after a windowing event, have

the priority incremented by two;
– a starved thread (ready for 3-4 sec) receives priority 15 and a double quantum.

21/01/2011 10

3. TinyOS
• This is an OS for tiny sensors.
• Only the necessary parts of the OS are compiled with

the application each application is built into the OS.
• It provides a set of system SW components.
• An application wires OS components together with

application-specific components – a complete system
consists in a scheduler and a graph of components.

• A component has four interrelated parts: a set of
command handlers, a set of event handlers, a fixed-size
frame and a bundle of tasks.

• Tasks, events and commands execute in the context of
the frame and operate on its state.

Presenter
Presentation Notes
To ensure that an application code has an extremely small footprint, TinyOS is very limited in services.

21/01/2011 11

The program model
• In TinyOS, tasks

and events

provide two sources

of concurrency.
• A hardware event triggers a processing chain that

can go upward and can bend downward by
commands.

• To avoid cycles, commands cannot signal events.
• Tasks don’t preempt each other.
• The scheduler invokes a new task from the queue

only when the current task has completed.
• When there is no task in the queue, the scheduler

puts the Core into the sleep mode – not the
peripherals.

21/01/2011 12

Events
• Events are generated by HW (interrupts).
• The execution of an interrupt handler is

called an event context.
• The processing of events also run to

completion, but it preempts tasks and can
be preempted by other events.

• If the task queue is empty, an event has
as result a task being scheduled…

• Event handlers should be small !

21/01/2011 13

The Timer TinyOS

component
• It works with a lower layer HWClock component = SW

wrapper around a HW clock that generates periodic
interrupts.

• An arrow pointing into the component denotes a call from
other components.

• An arrow pointing outside is a call from this component…

timer
Internal state:evenFlag

Init Start Stop Timer0Fire Timer1Fire

SetRate Fire

21/01/2011 14

The FieldMonitor

application
MainMain

Route mapRoute map RouterRouter SenseAndSendSenseAndSend

Active MessagesActive Messages TimerTimer

Radio PacketRadio Packet TempTemp PhotoPhoto

Radio byteRadio byte ADCADC

RFMRFM HWClockHWClock

Presenter
Presentation Notes
All nodes in a sensor field periodically send their temperature and photo sensor readings to a base station via an ad hoc routing mechanism.
Blocks represent components and arrow represent function calls.

21/01/2011 15

4. Android
• Android provides an operating system (Linux-based stack

for managing devices, memory and processes), plus
middleware and applications – it’s a general-purpose
system for mobile devices.

• The concept is that “the handheld is the new PC”.
• Android has its own JVM, called Dalvik VM.
• The Android SDK supports most of Java SE, except for

the Abstract Window Toolkit (AWT) and Swing. However,
it offers an extensive UI framework.

• One key architectural goal: allow applications to interact
with one another and reuse components from one
another.

• The reuse applies not only to services but also to data and
UI.

21/01/2011 16

Dalvik

VM
• DVM takes the Java class files and combines

them into one or more Dalvik executable files
(.dex). It reuses duplicate information from
multiple class files, effectively reducing the
space requirement from the traditional .jar file
(by half or even more).

• There is no JIT compiler because most of
Android’s libraries are implemented in C and
C++. Java graphics APIs are actually thin
wrapper classes around the native code using
the Java Native Interface (JNI).

• DVM uses CPU registers as the primary memory
instead of the stack; the expected result is 30%
less machine instructions.

21/01/2011 17

Android software stack
• Android core is the Linux kernel v 2.6; device drivers

include Display, Camera, Keypad, WiFi, FlashMemory,
Audio, IPC.

• A set of C/C++ libraries sit on top of the kernel: OpenGL,
WebKit (browser support), FreeType (font support), SSL,
the C runtime library (libc), SQLite (relational database
available on the device) and Media.

• Most of the application framework accesses these core
libraries through DVM. Each application will get its
instance of DVM.

• The Java API’s main libraries include resources,
telephony, locations, UI, content providers (data) and
package managers.

• On the very top are user applications such as Home,
Contacts, Phone, Browser, etc.

21/01/2011 18

Android foundational components
• An intent is an amalgamation of ideas such as windowing

messages, actions, inter-process communication,
publish/subscribe models and application registries.

• Example:

public static void invokeWebBrowser(Activity activity)
{

Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setData(Uri.parse(http://www.ucc.ie));
activity.startActivity(intent);

}

• Android is asked to start a window to display the content
of a web site.

http://www.ucc.ie)/

21/01/2011 19

• Intents define “intention” to do some work –
broadcast a message, start a service, launch an
activity, dial a phone number or answer a call.
They can also be used by the system to notify
the application of specific events (i.e. arrival of a
text message).

• Views are UI elements that can be used to
create a user interface.

• An activity is a UI concept. Usually, it represents
a single screen in the application; it can contain
one or more views.

• Content providers allow to expose data to
sharing by multiple applications.

• A service is a background process, local
(accessed only by the application hosting it), or
remote (accessed by other applications running
on the device).

21/01/2011 20

Android application lifecycle
• The Android application lifecycle is managed by

the system based on the user needs, available
resources, etc.

• The system decides if an application can be loaded
or it is paused or stopped.

• The activity currently used gets higher priority while
an activity not visible can be killed to free
resources.

• Each Android application runs in a separate
process which hosts its own virtual machine. This
is a protected-memory environment.

• Then, its priority can be controlled by the system.

Source: http://developer.android.com/reference/android/app/Activity.html

Presenter
Presentation Notes
There are three intervals: the entire lifetime, the visible lifetime and the foreground lifetime.

21/01/2011 22

Conclusions
• Compare the four different OS in terms of

how processes/threads are defined and
managed by the system.

	Lecture 3
	Few questions…
	1. UNIX
	Process states
	Process table
	Scheduling
	2. Win NT
	Thread state
	Win NT scheduling
	3. TinyOS
	The program model
	Events
	The Timer TinyOS component
	The FieldMonitor application
	4. Android
	Dalvik VM
	Android software stack
	Android foundational components
	Slide Number 19
	Android application lifecycle
	Slide Number 21
	Conclusions

