
Lecture 4

Process management in Linux

21/01/2011 2

• What are the main Linux system calls for
managing processes ?

• Are there many new states of a Linux
process ?

• What is the course of a process creation in
Linux ?

21/01/2011 3

• Linux addresses processes and threads as tasks.
• There are nearly 300 system calls, many related to process

management:
– fork(), corresponds to the original UNIX call;
– vfork() is a variation that eliminates the copy of the parent memory space in

the case where fork() is quickly followed by an exec() call. The child uses
the parent memory space until invoking exec(). The parent is suspended
this time.

– clone() allows to specify which of the parent’s resources are to be shared
with the child and which are to be copied;

– _exit() is for process termination. Applications that are ready to finish
generally either return from the main() function or call exit(). Exit() performs
some application-level cleanup of open files and then issues the _exit() call.
The kernel then frees the process’s resources and makes an exit status
available to the parent process.

– kill() is the means by which a process sends a signal – for some signals, the
default behaviour is to terminate the process, for most there is a signal
handler that is invoked when a signal is received.

– wait4() and waitpid() allow a parent process to inquire as to the state of a
child. Their purpose is to notify the parent when the child has exited and to
deliver its exit status to the parent.

– execve() allows a process to specify a program to begin running in place of
the current one.

– nice() gives the process the ability to adjust its priority level – higher values
represent lower priorities.

21/01/2011 4

Calls to the scheduler
– sched_setscheduler() allows a process with

enough privileges to change the policy and
priority level the scheduler uses for the
specified process.

– sched_getscheduler() allows the process to
query which scheduling policy is currently in
use.

– sched_yield() allows a process to give up the
remainder of its current time slice.

21/01/2011 5

Process state
• TASK_RUNNING refers to both running and ready;

• TASK_INTERRUPTIBLE represents a blocked state of a process that
can be awaken by signals sent by other processes issuing kill();

• TASK_UNINTERRUPTIBLE represents a blocked state from where
processes do not come out in response to signals.

• TASK_STOPPED is a state of a process that received the signal
SIGSTOP, from which is comes out when it received SIGCONT. These
signals implement job control in several of the user interface shells.

• TASK_TRACED is used as part of the tracing facility where a process
can control the execution of another process. It is used for the
implementation of debuggers.

• EXIT_ZOMBIE
• EXIT_DEAD is used when a process terminates and its parent is not

notified. The process can be removed from the system immediately.

21/01/2011 6

Running Zombie

Interruptible

Uninterruptible

Stopped

Ready

21/01/2011 7

Process creation
• Processes in Linux can be created by either fork(), or vfork(), or

clone(). All three call do_fork(). This function has three responsibilities:
– do_fork() calls copy_process() for creating the child; it uses the

clone_flags parameter to determine which of parent’s resources are
copied and which are shared.

– sets up the suspension of the parent process if it’s about vfork().
– sets up the initial state of the child; it can be either in a Ready or Stopped

state.
• Handling the system call

– The clone_flags long integer parameter is treated as a set of one-bit flags
that control the copy vs share. In most cases, stack_start is the calling
process SP. The regs parameter points to a structure containing the
machine registers saved on entry to the system call.

long do_fork(unsigned long clone_flags, unsigned long stack_start, struct
pt_regs *regs, unsigned long stack_size,…)

{
struct task_struct *p;
int trace = 0;

21/01/2011 8

Assigning the process ID
• alloc_pid() maintains a global variable called last_pid, which is the most recently assigned

pid.
• When called, it tries last_pid+1. Because pid can be reused, it must be checked if the

tentative pid is in use. To make the check quickly, alloc_pid() maintains a bitmap of all
possible pids. If the pid is in use, the search will start from there for the next unused one.

• If the pid allocation fails, -EAGAIN is returned to indicate the failure; however allocation
can be tried later, as process termination returns valid pid.

• If one unused value was found, it will be returned and assigned to pid.

struct pid *pid = alloc_pid();
int nr;
if (¬pid)

return –EAGAIN;
nr = pid nr;
if (unlikely(current ptrace)) {

trace = fork_traceflag(clone_flags);
if (trace)

clone_flags |= CLONE_PTRACE;
}

Unlikely() as likely() are macros that indicate to the compiler the expectation of an if
condition to evaluate to true or to false.

21/01/2011 9

Creating the child process
• Now, copy_process() can be called to do most of

the work for creating the child process.
• The key passed arguments are: clone_flags,

stack_start, regs and pid.
• At this point, only the parent returns in the code.
• The child is set up to go directly to the code that

returns from the process creation call.

p = copy_process(clone_flags, stack_start, regs,
stack_size,..,nr);

21/01/2011 10

Setting up parent behaviour

• If vfork() was called, the parent must block
until the newly created child issues an
_exit() or an execve() call. Setting the
value of p vfork_done sets up the
mechanism used to notify the parent that it
may continue.

21/01/2011 11

Starting the child process
• The child inherits the parent’s Ready state. By calling

wake_up_new_task(), the child is inserted into the appropriate ready
queue.

• However, it is possible to create a process that starts in the Stopped
state, state that can be changed to TASK_STOPPED.

if (¬(clone_flags & CLONE_STOPPED))
wake_up_new_task(p, clone_flags);

else
p state = TASK_STOPPED;

if (unlikely(trace)) {
current ptrace_message = nr;
ptrace_notify((trace <<8)|SIGTRAP);

}

21/01/2011 12

Determining parent behaviour
• In the case of vfork(), the parent is blocked until the child

issues the necessary system call. The call
wait_for_completion() sets the state of the parent to
TASK_UNINTERRUPTIBLE in order to block it. When the
vfork structure is modified , indicating that the child
finished using the parent’s memory space, the parent is
moved from Blocked to Ready.

if (clone_flags & CLONE_VFORK) {
wait_for_completion(&vfork);
if (unlikely(current ptrace&PT_TRACE+VFORK_DONE))

ptrace_notify((PTRACE_EVENT_VFORK_DONE<<8)|
SIGTRAP);
}

21/01/2011 13

Creating the process
• copy_process(), along with the functions it calls, does the real work of

creating the new process.
• The call to dup_task_struct() allocates a new task structure and copies

the parent’s structure into it. It also sets up the pointers between the
process stack and the new task structure. At this point, we have a new
process table entry for the child process with an initial set of values.
Many of the members of this structure are changed later in this function.

• After initializing some values, locks and timers, there are lines of code
that handle the copying or sharing of the parent’s resources – memory,
files.

• The last one, copy_thread() handles the difference in the way the child
returns.

• sched_fork() splits the remainder of the parent’s time slice evenly
between the parent and the child. We don’t want other processes
starved by one that continuously creates children.

• Both CLONE_PARENT and CLONE_THREAD flags imply that the new
process is a sibling of the caller. Otherwise, it is a child of the caller.

• The call to fork_out(): if errors were encountered during the process, the
error will be returned. Otherwise, the pointer to the process table entry
will be returned.

21/01/2011 14

Assignment
• Learn about Linux process table and write

a brief report (1-2) pages about it,
including explanations about its content.

• Due: 4th February 2011, 5 pm
• Format: pdf file submitted at the end of CS

2506 lecture, or by email – subject:
cs2506 assignment.

	Lecture 4
	Slide Number 2
	Slide Number 3
	Calls to the scheduler
	Process state
	Slide Number 6
	Process creation
	Assigning the process ID
	Creating the child process
	Setting up parent behaviour
	Starting the child process
	Determining parent behaviour
	Creating the process
	Assignment

