
Lecture 5

Linux process scheduling

26/01/2011 2

The Linux scheduler
• It gives preference to interactive processes and processes

with lower nice values.
• Key features:.

– There are two multilevel feedback queues/CPU, for active and expired
designated processes.

– It uses a bitmap to quickly determine which queue is the highest
priority nonempty one.

– Interactive processes that completely use their quantum are placed
back into the active queue and are scheduled round-robin – these are
processes that were recently blocked for a significant amount of time.

– Compute-bound processes that completely use their quantum are
moved to the expired queue.

– When the active queue becomes empty, it is swapped with the expired
queue.

– Priority and time slice length are computed each time a process is
placed into a queue.

– Processes scheduled according to the SCHED_FIFO policy are real-
time processes with a higher priority than any time-sharing process.

– The same as above for SCHED_RR but with finite time slices.

26/01/2011 3

Priorities
• Linux has two classes of processes,

real-time (RT) and time-sharing (TS).
• RT are scheduled according to the

SCHED_FIFO or SCHED_RR policies.
They have a static priority value in the
range [0, 99].

• TS processes are scheduled according
to the SCHED_NORMAL policy. Their
priority is in the range [-20, 19].
Internally, they are scaled to the range
[100, 139].

• Smaller values correspond to higher
priorities.

• Each TS has a nice value and
sleep_avg value which is the amount
of time spent recently blocked.

• On a transition to Ready, sleep_avg is
incremented by the amount spent on
blocked up to a max of
MAX_SLEEP_AVG (1 sec). For each
clock tick spent running, sleep_avg is
decremented by some period of time
down to 0. From this measure, the
effective priority is computed as:

• Where n is the nice value in the
internal representation, s is the
average sleep time, Ms is the max
average sleep time and Mb is 10.

• The effect of this is to linearly map the
range of average sleep times, 0 –
MAX_SLEEP_AVG onto the range [-5,
5] and add to nice.

• If the value resulted for p is outside the
range [100, 139], it is set to the
corresponding end of the range.

• As a result, processes that spent a lot
of time blocked are given a priority
boost.

• Additionally, Linux also adjusts the
length of a time slice based on nice:
negative values of nice determine a
longer time slice.

2
b

b
s

MM
M
snp −+=

26/01/2011 4

Handling RT/TS processes
• For each clock tick, scheduler_tick() is called:
• If the current process is the idle one and the system has multiple cores, rebalance_tick() rebalance the

load; otherwise it does nothing.

• If the current process is in the expired queue, then the process is preempted and reschedule is called -
this situation is considered an error.

• The priorities of RT processes are never adjusted and they never move to the expired queue.
• These processes (SCHED_FIFO policy) are allowed to run until they yield the CPU. For a RR RT

process, its time slice is finished, therefore it’ll be put at the back of the queue and the reschedule flag
will be set.

• For a TS process, when its time slice is finished, the process is pulled out of its queue and its priority
and quantum are recomputed. The question is in what queue to put this process now, the active or the
expired one ?

• If the process is compute-bound or if processes in the expired queue are starving, then the process will
be moved into the expired queue.

– the first condition is based on the current value of nice and the current priority boost;
– does enough time passed such that all ready processes have had a chance to get as much time as the max sleep

average ? If the answer is yes, the processes are put into the expired queue.

• If there is a process with a very long time slice and there are processes with the same priority, the time
slice is split such that other processes get some time. The preempted process is put back in the active
queue.

• If scheduler_tick() determines that a new process needs to be scheduled, it sets a flag in the current
process that indicates that reschedule is needed.

• Before returning from the clock interrupt, the kernel checks that flag. If the flag is clear, the kernel
returns from interrupt. If it is set, the kernel calls schedule(), prior to returning from interrupt.

26/01/2011 5

The Linux scheduler
• It runs in constant time !
• The first thing it does is to check for an error condition: if the current

process is flagged as nonpreemptible, the scheduler should not be run !
• The same applies if the current process is the idle one and it’s not

running.
• If the prev process has just blocked, it is taken out of the active queue

by deactivate_task().
• The active ready queue has some ready processes. The process at the

head of the highest priority nonempty level should be selected.
• The function sched_find_first_bit() is architecture-dependent to take

advantage of any special features found in the CPU instruction set; i.e.,
may processors have an instruction that will indicate the first bit in a
word set to 1.

• After that, next is set to point to the first process table entry in the list.
• The following operation is the context switch, executed by calling

context_switch():
– The first stage is to switch all the memory management details to the new

process.
– The second is to switch registers and the stack so that the return from

interrupt goes back to the new process.

26/01/2011 6

• If there are no processes in the ready
state, there will be an attempt to balance
the load. If this is not possible, a switch to
the idle process will take place.

• If the active queue has no processes it is
time to swap between the active and
expired queues.

26/01/2011 7

Summary
• There are different sorts of OS that meet the

requirements of targeted application areas. One key
difference is how they deal with concurrency and the
implementation of the control flow in programs (process,
thread, activity).

• Generally, the set of system calls and process states is
very similar.

• The scheduler plays a key role within the kernel. It
implements algorithms for resource allocation to
processes.

• Linux is a very popular OS that implements innovative
solutions, especially regarding multicores.

• Priority and time slice are recomputed in order to favour
interactive processes.

26/01/2011 8

Questions
• What does the scheduler_tick() system

call ?
• How does the scheduler() work ?
• What periods of time are computed during

the scheduling process and how are they
used ?

• What are the differences between RT and
TS processes ?

• How and when is the priority updated ?

	Lecture 5
	The Linux scheduler
	Priorities
	Handling RT/TS processes
	The Linux scheduler
	Slide Number 6
	Summary
	Questions

