
Lecture 6

Principles of memory 
management



28/01/2011 2

• Is there any difference between the 
physical memory space and the memory 
space of a program ?

• Why is the memory organised 
hierarchically ?

• How is segmentation working ?
• What are the benefits and limitations of 

paging.
• What other service regarding memory 

management can be provided by the OS ?



28/01/2011 3

Address translation
• The memory addresses are physical (real) 

addresses. They uniquely identify memory locations 
and create the physical address space.

• On the other hand, the process layout is specified 
in terms of virtual addresses. Their set represents 
the virtual address space.

• Therefore, a mechanism is needed for address 
translation.

• In addition to address translation, the memory 
management unit (MMU) takes care of protecting 
the memory space among processes.

• Methods of address translation:
– base registers;
– segmentation;
– paging.



28/01/2011 4

Base registers
• The virtual address is added to the content of a 

base register. The result is the physical address.

• The limit can be either the size of the allocated 
memory space or the last physical memory 
address allowed to this process.

Limit VA Base

+<

PAFault



28/01/2011 5

Segmentation

• In this case, different memory segments 
store different parts of the program: code, 
data, stack. Each segment will have 
separate base and limit registers.

• One possibility is to use CPU dedicated 
registers (i.e. Intel x86), or the higher- 
order bits of the VA point within tables 
storing the base and limit values. 



28/01/2011 6

Paging
• The virtual address space is divided into pages of 2k 

bytes each. If the virtual address is n bits, then the virtual 
memory space consists of 2n-k pages.

• The upper n-k bits form a page number and the lower k 
bits are an offset into page.

• In the physical memory space, one 2k byte space where 
a page can be mapped is called a page frame.

• Pages are managed with the help of tables, called page 
tables.

• A page table is indexed by the page number in a virtual 
address; the page table entry (PTE) defines the 
translation.

• The complete set of fields in PTE includes the following:



28/01/2011 7

PTE fields
• Page frame number – this determines the page frame to 

which the page is mapped; this field is concatenated with 
the offset to give the physical address.

• Protection bits – e.g., shared pages are marked as 
“read-only”, or data pages are separated from code 
pages.

• Present bit (P) – called also the valid bit is set when 
there is a translation of this page number into a page 
frame number. Otherwise, when an attempt to access a 
page for which there is no valid translation, an interrupt 
will be generated (“page fault”). There can be two 
causes of this error: either that page was not allocated to 
the process, or the page is not present in the memory.

• Dirty bit (D) – called also as the modified bit signals 
when a write operation occurred in that page.

• Accessed bit (A) – is set when the page is being 
accessed. 



28/01/2011 8

Management of page tables
• Let’s assume a 32-bit virtual address and that the page 

size is 212 = 4096 byte. There are 220 pages and therefore 
the same number of PTE. If each PTE is 4 bytes, the page 
table will be 4 MB !

• A better solution is to organize the virtual space 
hierarchically – two-level page table. The 20 bit are split in 
two groups of 10. the most significant 10 bits index a page 
table, called page directory. The page frame number stored 
in the selected PTE identifies the page holding the page 
table, which is then indexed by the other 10 bits of the page 
number.

• Another solution is to use cache memories to improve the 
speed of the paging system. The cache (Translation 
Lookaside Buffer) is addressed by a lookup on the page 
number. If hit, the PTE is in TLB….

• With inverted page tables, used by 64-bit systems, page 
frame numbers are mapped to page numbers. TLB works 
the same way.



28/01/2011 9

Other memory services
• The OS provides two primary memory services to 

processes: allocation/de-allocation.
• Explicit allocation: the process specifies exactly which 

memory addresses are required;
• Implicit allocation: the process needs a particular block of 

memory but it doesn’t mention where it should be in the 
memory space.

• Either way, applications often further subdivide the 
allocated space with their own memory management.

• De-allocation can be explicit (the process invokes a system 
call to free some memory areas), or implicit when areas not 
addressed by code are freed – mark and sweep algorithm.

• An additional service can be the control of memory sharing 
among processes.



28/01/2011 10

Memory layout
• The main memory stores the interrupt vectors (generally 

at the beginning of the memory space), OS, user 
processes, and I/O mapped addresses.

• Generally, the process will have allocated segments, 
code, data, stack. How are they positioned ?
– If the system has a large virtual memory space, the segments 

will be positioned at fixed virtual address boundaries (e.g., code 
segment at address 0, for 1 GB, then the data segment, and 
then the stack segment.

– The second possibility is to allocate the code segment only as 
needed. At its end, the data segment starts, growing upwards. 
The stack segment starts at the top of the address space and 
grows downwards.

• Not the entire addressable memory space can be 
functional.

• Some memory areas can be reserved.


	Lecture 6
	Slide Number 2
	Address translation
	Base registers
	Segmentation 
	Paging
	PTE fields
	Management of page tables
	Other memory services
	Memory layout

