
Lecture 7

Memory Allocation Techniques



02/02/2011 2

•
 

How does the OS manage the free 
memory space ?

•
 

How are free memory blocks allocated to 
processes ?

•
 

Is there any side effect of memory 
allocation ?



02/02/2011 3

Free space management
•

 
The OS needs to locate free memory blocks which 
can then be allocated to processes.

•
 

If the system is using pages of fixed-size, one 
bit/page can show its state, free or not –

 
this 

solution is called free bitmap.
•

 
In some cases, memory blocks are not created 
equally and processes need contiguous page 
frames. In this case, the allocation is satisfied 
when a set of free pages that match the request is 
available. 

•
 

Free memory blocks can also be represented in a 
linked list. Again, when dealing with fixed-size 
pages, allocation is easy –

 
take first off the list, or 

when it becomes free, append it to the list.



02/02/2011 4

•
 

If memory is allocated in variable-sized 
blocks, the list needs to be searched to 
find a suitable block.

•
 

With the linked list, there is a structure 
which stores the first address, the size and 
a pointer to the next element in the list.

•
 

To speedup the search process (O(n) for 
list), binary trees or hash tables can be 
used.

•
 

Another important aspect is that except for 
the global pointer free_list, everything else 
is stored in the free blocks themselves.



02/02/2011 5

Fragmentation
•

 
If memory blocks are fix in size, the allocation process can 
result in waste –

 
more memory allocated than necessary -

 internal fragmentation, or left not allocated –
 

external 
fragmentation. 

•
 

The simplest method of allocating memory is based on 
dividing memory into areas with fixed partitions. Typically, 
fixed partitions between blocks of varying size are defined 
from the time the system starts until it shuts down.

•
 

However, the flexibility of allocating memory in either large 
or small blocks is needed: e.g., a free block is selected 
and split into two parts –

 
the first is allocated to the 

process, the second is returned as free. The allocation is 
done in multiples of some minimum allocation unit (OS 
parameter). This helps to reduce external fragmentation. 
Generally, the allocation unit is small. 



02/02/2011 6

Selection policies
•

 
If more than one block can satisfy a request, then which 
one to select ?

•
 

First fit takes the first block from the list which is greater 
than or equal to the requested size. If the request cannot 
be met, it fails. This policy tends to cause allocations to 
be clustered towards the low memory addresses –

 
the 

effect is that the low memory area gets fragmented, while 
the upper memory area tends to have larger free blocks.

•
 

Example: sequence of allocations (A) and deallocations
 (D): A20, A15, A10, A25, D20, D10, A8, A30, D15, A15, 

where n denotes the number of KB requested. Let’s 
assume that the memory space is 128 KB.

20

20 15

A20

A15
……………………………………………………………………..



02/02/2011 7

•
 

Next fit starts the search with the free block that is 
next on the list to the last allocation. During the 
search the list is treated as a circular one. If 
returned to the initial starting point without any 
allocation, the process fails. This strategy leads to 
a more evenly allocation of free memory.

•
 

Best fit allocates the free block that is closest in 
size to the request. Like first fit, best fit tends to 
create significant external fragmentation, but 
keeps large blocks available for requests of larger 
sizes.

•
 

Worst fit allocates the largest block for each 
request. It has an advantage: if most requests are 
of similar size, the worst fit minimizes external 
fragmentation. 

Other strategies



02/02/2011 8

The buddy system
•

 

All blocks are a power of 2 in size.
•

 

Let n be the size of the request. Locate a block of at least n bytes 
and return it to the requesting process:

1.

 

If n < smallest allocation unit, set n to be the smallest size.
2.

 

Round n up to the nearest power of 2. select the smallest k such that 
2k

 

≥

 

n.
3.

 

If there is no free block of size 2k, then recursively allocate a block of 
size 2k+1

 

and split it into two free blocks of size 2k.
4.

 

Return the first free block of size 2k

 

in response to the request.

•

 

Each time a block is split, a pair of buddies is created; they’ll 
either be split or paired together.

•

 

It is easy to determine (by looking at bit k+1) which is the buddy of 
a block.

•

 

This method tends to have very low external fragmentation. The 
price paid is more internal fragmentation.

•

 

The block that is deallocated

 

is a buddy to a free block, in order to 
create a larger free one.



02/02/2011 9

Over-allocation techniques
•

 
Up to now, the assumption was that allocation 
deals only with free blocks. However, not all 
allocated blocks are in use all the time. Seldom 
used blocks can be transferred to disk.

•
 

Swapping
 

consists in transferring one blocked 
process memory space on disk. Then, when the 
process becomes active, it’ll be restored.
–

 
If the process shares the code with other processes, 
only data and stack will be swapped.

–
 

The second issue is the amount of memory that is 
freed by swapping and the usage patterns of that 
process.



02/02/2011 10

Segment/page swapping
•

 
If the hardware supports only a limited number of 
segments (code, data, stack), only those can be swapped. 
A larger number of segments allow for more memory 
space to be freed by swapping.

•
 

Paging is similar as technique but involves pages, which 
correspond to a finer-grained level. When a request for 
memory space is received, only the necessary number of 
pages is swapped.

•
 

If a page was swapped out to disk, the present (P) bit is 
cleared, causing a page fault it there is an access attempt.

•
 

When a page fault occurs, the OS must decide if the 
process tries to access a page not allocated to it or a 
swapped one. The loading of pages when they are 
needed is called demand paging.

•
 

Generally, the system doesn’t load only one page but a 
set of pages (e.g., n pages of code) –

 
this is called pre- 

paging/pre-loading.



02/02/2011 11

Page replacement policies
•

 
One option is to replace only pages of the process itself 
(local replacement) in contrast to selecting a page from all 
processes in the system (global replacement).

•
 

Belady’s Min: pick the page that will be used least soon. If ti
 

is the time at which page i will next be accessed, the 
selected page corresponds to argmaxi

 

ti
 

. This strategy is 
optimal as it assures that the number of page faults is 
minimized. Of course, it is not a practical one (can’t 
anticipate the future), but it can be used as a reference for 
simulations.

•
 

First In First Out starts from the idea that pages are used 
for a finite amount of time after which they become “old”. 
The page selected here is the one that has been in 
memory the longest. Implementation is done by a queue –

 all new pages are added to the tail of the queue.



02/02/2011 12

•
 

Second chance is an extension of FIFO: when a page is 
pulled off the head of the queue, the accessed (A) bit is 
examined. If it’s 0, the page is swapped out, else the bit 
is cleared and the page is reinserted at the tail of the 
queue. A second examination of the queue will produce 
available pages.

•
 

The clock algorithm is similar to the second chance: two 
clock hands are moving synchronously above pages; the 
distance between them determines how long the page is 
given to be accessed. If it has not been accessed within 
that time, it can be swapped out.

•
 

In many implementations of the two-handed clock, the 
hands are not moved only when a page fault occurs. The 
pair of hands periodically advances some number of 
pages and keep a record of those with A = 0.



02/02/2011 13

•
 

Not recently used refers not only to pages with 
A=0 but also to pages which were not written into 
(M=0); therefore, if they have a copy on the disk, 
they don’t need to be swapped out. Only one read 
brings the new page. This policy works well in 
conjunction with two-handed clock which analysis 
the bit pair AM –

 
00, and the lowest value is 

preferred.
•

 
Least recently used is based on the time passed 
since a page was last time used. This concept is 
rarely used in practice because of the difficulty to 
implement it (software, hardware ?). One 
possibility is to periodically mark pages as not 
present (P=0). When a page is accessed, it 
generates a page fault. The OS checks to see if 
the page is actually present, and if it is, the access 
time is recorded; P=1 to avoid further page faults.



02/02/2011 14

•
 

Not frequently used is based on counting 
memory references. Periodically, all pages in the 
memory are swept and for each one with A=1, A 
is cleared and a page counter is incremented. 
Then, the page with the smallest value of the 
counter is selected for swapping.

•
 

This strategy penalizes newly loaded pages and 
keeps heavily used pages longer than wished.

•
 

This policy can be improved by weighing recent 
references more heavily than older ones –

 
this is 

called aging.
•

 
Question: how can aging be implemented ?



02/02/2011 15

•
 

The working set of pages corresponds to the 
number of pages a specific process is using at a 
time. There are variations, and two thresholds 
(called also watermarks) can be considered. 
They are the upper and lower bounds of the 
working set.

•
 

If a process has allocated more pages than its 
upper threshold for the working set, it is a good 
candidate for page swapping. Contrary, if by 
taking a page the lower threshold is passed, it 
makes sense to swap all the pages. 

•
 

The two thresholds can be selected based on 
the page fault frequency. If a process generates 
page faults too often, it needs more pages; if it 
doesn’t generate page faults for a time, probably 
it has too many pages.



02/02/2011 16

Segments and pages
•

 
Many systems work with segments that are 
made of pages.

•
 

In this case, one option for overallocation
 management is to simply ignore segments and 

work only with pages.
•

 
Sometimes segments can contain the full 
working set of pages, or critical pages of the 
process (e.g., libraries) and they can be dealt at 
the segment level –

 
swap or not the entire 

segment.
•

 
However, page swapping gives more flexibility in 
satisfying requests.



02/02/2011 17

Exercises
•

 
Consider a 64-bit system. If the page size is 64 
KB, how many levels must the paging system 
have so that each table fits within a page ?

•
 

Suppose a system with 128 MB of memory and 
no memory initially allocated. Given the 
sequence of allocations/deallocations: A(10), 
A(20), A(15), D(20), A(12), A(30), D(15) and 
A(17), all expressed in MB, show the free list at 
each stage for each of first fit, next fit, best fit 
and worst fit.

•
 

Does using paged memory management 
hardware have any value even if pages are 
never swapped to disk and back ?


	Lecture 7
	Slide Number 2
	Free space management
	Slide Number 4
	Fragmentation
	Selection policies
	Slide Number 7
	The buddy system
	Over-allocation techniques
	Segment/page swapping
	Page replacement policies
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Segments and pages
	Exercises 

