
Lecture 8

Examples of memory
management

09/02/2011 2

Windows NT
• Prior to NT, Win32 systems did not limit the

access of processes to only the memory
allocated to them. As a result, processes often
had dangerous access to other processes and
the OS.

• At the lowest level, Win32 memory calls operate
on pages:
– VirtualAlloc and VirtualAllocEx are called for allocation;
– VirtualFree and VirtualFreeEx calls release memory;
– VirtualLock forbids pages to be swapped;
– CreateFileMapping is used both to map files to

memory and to establish memory areas shared by
multiple processes.

09/02/2011 3

Page management
• Win NT uses a working set page management strategy – each process has

an admin determined min and max working set size. The default values are
based on the amount of physical memory in the system.

• When a process needs to read a page and is using its max working set size,
then the choice of page to be replaced comes from its set. If it needs to read
a page and its set size is below the min, one page will be added to it.

• To keep available free pages, the system periodically checks the number of
free pages and if there are too few, it runs the working set manager. This
manager trims the working sets that are above their min size and frees
pages.

• Regarding the page replacement policy, the system initially used FIFO: the
page selected for removal is the one that has been in the working set the
longest.

• However, removed pages are placed on a list from where they can be re-
added to the working set if they are referenced before their frames are re-
allocated.

• Recently, the policy in use is NFU: pages are periodically scanned and if
they were accessed since the last scan, a counter is incremented. The
counter is also aged so as to weigh recent access more heavily than older
accesses. Then, pages are added to a list from which they can be
reallocated if needed.

09/02/2011 4

Allocated

Standby Free Zero

Modified

Windows NT page frame state machine

09/02/2011 5

TinyOS

• Embedded systems have small main
memories and no memory management
hardware.

• There are no memory allocation features
of the OS.

• The layout of components in memory is
determined at build-time by the linker.

09/02/2011 6

Linux memory management
• To support processes that may allocate memory

implicitly as part of the process creation and as a
result of stack growth, or explicitly through two
system calls, Linux implements a number of
mechanisms that operate both on fixed-sized
pages and variable-sized blocks.

• Variable allocation can be in the form of multiple
contiguous pages or in the form of smaller
allocations within pages.

• Linux supports demand paging and page
swapping.

09/02/2011 7

Linux physical memory layout
• The physical memory layout for any system is highly

dependent of the hardware as well as the design of the
OS.

• For Intel x86, the 1st MB is largely unused except during
booting and some 360 KB used for accessing memory-
mapped I/O controllers. The next several MB store the
uncompressed kernel image.

• The area between the top of the kernel and the end of the
first 16 MB area is used primarily for I/O buffers
ZONE_DMA.

• The remainder of the memory is called ZONE_NORMAL.
• For systems with more than 1GB of physical memory,

ZONE_NORMAL ends at 896MB, and the rest is
ZONE_HIGHMEM.

09/02/2011 8

System calls
• Process management calls have implications for memory

management: fork() copies the parent space; this is done
using copy-on-write (COW) which permits sharing of code
segments.

• execve() requires the release of the memory previously
used by the process, followed by memory allocation to the
new process. A feature of Linux is that it does not load the
executable code into memory as a result of execve().
Rather, it treats the executable as a memory-mapped file,
and then uses demand paging to load pages as needed.

• The UNIX brk() system call has a parameter that specifies
the first address that is not part of the data segment. The
interpretation is that everything else is available for the
stack.

• In Linux, however, the breakpoint defines the separation
between data and the area used by mmap().

• Finally mmap() is for mapping files in memory.

09/02/2011 9

Allocation mechanisms
• Linux uses the Buddy algorithm to effectively allocate and deallocate blocks

of pages. The page allocation code attempts to allocate a block of one or
more physical pages.

• The allocation algorithm first searches for blocks of pages of the size
requested. It follows the chain of free pages that is queued on the list
element of the free_area data structure. If no blocks of pages of the
requested size are free, blocks of the next size (which is twice that of the
size requested) are looked for. This process continues until all of the
free_area has been searched or until a block of pages has been found.

• If the block of pages found is larger than that requested it must be broken
down until there is a block of the right size. The free blocks are queued on
the appropriate queue and the allocated block of pages is returned to the
caller.

• Allocating blocks of pages tends to fragment memory with larger blocks of
free pages being broken down into smaller ones. The page deallocation
code recombines pages into larger blocks of free pages whenever it can. In
fact the page block size is important as it allows for easy combination of
blocks into larger blocks.

• Whenever a block of pages is freed, the adjacent or buddy block of the same
size is checked to see if it is free. If it is, then it is combined with the newly
freed block of pages to form a new free block of pages for the next size
block of pages.

09/02/2011 10

Slab allocator
• Not all allocation requests are multiple of pages,

or even a full page. Sometimes, a data structure
of few tens of bytes needs memory space.

• Linux implements a mechanism called the slab
allocator. Slabs are collections of free memory
blocks of a particular size. When a request
matches that size, the slab can satisfy it. If the
slab is empty, one or more pages are divided
into blocks of the required size and added to the
slab.

• When a block is released, it is added to the slab.

09/02/2011 11

Page management
• For portability, Linux abstracts its page management – it uses a

four-level page table design.
• The uppermost bits of the VA index a page global directory (pgd).

The selected entry points to a page upper directory (PUD), which is
indexed by the next most significant bits of the VA.

• The pud entry points to a page mid-level directory (pmd) indexed by
the third group of bits.

• Finally, the pmd entry points to a page table (pt) indexed by the
fourth group of bits. The least significant group of bits of the VA
give the offset into the page frame pointed to by the selected page
table entry, which includes the page frame number part of the
physical address (PA).

• The basic design does not specify the number of bits used for each
of the fields in either VA or the PA.

• For hardware (i.e. Intel x86) that has fewer levels of page tables,
Linux merges levels together – i.e. pud and pmd are merged into
the pgd. Both pgd and pt are indexed by 10 bits of the 32-bit VA.
This leaves 12 bits to give the page offset, resulting a page size of
4096 bytes.

09/02/2011 12

Memory Review
•

Free space management
– Free bitmap;
– Linked list;
– Binary tree;
– Hash table.

•

Memory allocation
– First fit;
– Next fit;
– Best fit;
– Worst fit;
– Buddy system;
– Swapping;

•

Page replacement
– FIFO;
– Second chance;
– Not recently used (NRU);
– Least recently used (LRU);
– Not frequently used (NFU);
– The working set.

09/02/2011 13

Analysis
• Different mechanisms have different cost in

terms of resources that are used and execution
time.

• What is the main parameter of interest for
memory allocation strategies ?

• Consider your own design of a memory
management system (MMS) for a multi-process
operating system. Would you choose the same
mechanisms as Linux ? Explain your options.

• Regarding its implementation, will the MMS be a
multi-process system itself ?

	Lecture 8
	Windows NT
	Page management
	Slide Number 4
	TinyOS
	Linux memory management
	Linux physical memory layout
	System calls
	Allocation mechanisms
	Slab allocator
	Page management
	Memory Review
	Analysis

