
Lecture 10

Examples of I/O Device 
Management



11/02/2011 2

• How are I/O devices represented within 
the OS ?

• Does the OS create types of devices ?

• How are specific drivers working ?



11/02/2011 3

6th
 

edition UNIX
• All input and output operations are carried out through the 

same read() and write() system calls that are used for file 
operations.

• Devices are also opened in the same way as files, using 
names managed by the file system.

• Querying and setting serial port parameters is handled 
through the gtty() and stty() system calls, respectively.

• Device drivers are included as part of the kernel image 
loaded at boot time.

• In UNIX, devices are either block or character. Applications 
directly open, read, write and close only character devices. 
Access to block devices is provided by the files system. 
However, most block devices drivers also support a raw 
interface similar to that for character devices. 



11/02/2011 4

Representation of devices
• When a device name, such as /dev/tty, is referenced, the 

file system translates it to three data items: a major device 
number, a minor device number and a flag indicating if the 
devices is a character or block one.

• In handling a system call, the flag is used to select one of 
two tables, bdevsw and cdevsw, that determine how the 
call is processed.

• The major device number is used to index the selected 
table. Each entry is a structure containing pointers to 
functions for handling specific operations.

• The minor device number is passed to the driver which 
may use it as it sees fit (i.e. indicates which device among 
several connected to a controller is selected). In some 
other cases, this number can be interpreted differently – 
e.g., rewound a tape when closed.



11/02/2011 5

Block and character device 
drivers

• Block device drivers have three entry points:
– an open routine is called to prepare the device when 

the file system it contains is mounted (attached to the 
general system directory tree);

– a close routine for cleaning up when a file system is 
unmounted;

– a strategy routine starts the controller if it is idle when 
a request arrives. Otherwise, incoming requests are 
queued up to be handled by the interrupt routine.

• Character device drivers have five entry points: 
open(), close(), read(), write() and the fifth called 
for both gtty() and stty().



11/02/2011 6

I/O devices in Linux
• As most of the details of managing I/O requests for block 

devices are independent of the device, Linux abstracts 
those details into a block I/O layer.

• This layer provides functions that manage request 
queues. Requests of type struct request are added to a 
queue by the file system. Then, they are broken into one 
or more structures of type struct bio, each of them 
corresponding to one I/O operation.

• Block device drivers specify a function to be called each 
time there is a block I/O operation that becomes 
available for processing. This happens either when a 
new request is added to an empty queue or when a 
request has been completed and is removed from the 
queue.



11/02/2011 7

I/O schedulers
• Noop scheduler merges adjacent requests; when a request addresses 

sectors adjacent to sectors accessed by a request already in the 
queue, the two can be combined into a single request.

• Deadline scheduler merges requests as above and maintains three 
queues: one for all read requests in FIFO order, one for write requests 
in FIFO order and one for requests sorted by sector number. When 
being inserted, each request has an expiration time attached. (read – 
500 ms, write – 5 sec). The expiration times are selected to give 
preference to reads over writes (processes must block until reads are 
complete, writes are buffered, so that processes may continue…).

• Anticipatory scheduler is a variation of the deadline scheduler; it 
introduces a delay of few msec at the end of each request service. If 
another request arrives for the same area of the disk during that time, 
it will handle it immediately. Otherwise, the delay expires and the 
scheduler goes back to processing the queues normally.

• Complete fair queuing scheduler maintains a separate queue for each 
process. Requests are merged and inserted in order of sector number. 
It schedules among the queues in a round-robin order. By default, it 
processes up to four requests from a process’s queue before moving 
on to the next. In this way, no single process can starve other 
processes of disk access.



11/02/2011 8

Two-half interrupt handler

Block I/O layer

System call

Device driver

Interrupt handler
Top half

Interrupt handler
Bottom half

Interrupt 
Work queue

manager

The top half is invoked by the interrupt; it does minimum work,
ack the interrupt and retrieving the controller status. Then it
schedules the bottom half to run at some time later.



11/02/2011 9

Parallel port driver
• This is a simple character driver – the printer.
• When an application issues a write() on the file descriptor attached to a 

parallel port, the lp_write() function of the driver is called. It takes as 
arguments a pointer to a structure that describes the open file, a pointer to 
the data in the user process’s memory space, and a count giving the 
number of bytes to write.

• Preparing to service the request: the size of operation is limited to the 
available buffer (the size of a page); the request is broken into a series of 
write operations, each one page in size.

• Fetching the data for the write: data is copied from the process space into 
the buffer.

• Setting up the hardware: if multiple processes/threads attempt to access the 
port simultaneously, they can interfere with each other and cause improper 
function. Therefore, the process needs exclusive access to the hardware 
port. The next step is to determine which mode of operation is the proper 
one. The last step is setting a time out.

• Writing pages of data: call parport_write() for each page; this is followed by 
fetching the next page,…

• Cleaning up: the port is released by unlocking the mutex lock of this port 
data structure.

• The main function of parport_write() is to identify and call the appropriate 
function for the specific hardware and operating mode.


	Lecture 10
	Slide Number 2
	6th edition UNIX
	Representation of devices
	Block and character device drivers
	I/O devices in Linux
	I/O schedulers
	Two-half interrupt handler
	Parallel port driver

