
Lecture 13

File systems in Linux



10/03/2010 2

• What is the Linux Virtual File System ?
• What is a superblock ?
• What is an i-node ?
• How is a path name translated to an i- 

node as part of the open() system call ?



10/03/2010 3

Virtual file system
• Linux supports a wide range of file systems by working with 

two levels of abstraction.
• At the higher level, the Virtual File System (VFS) implements 

a number of common services and generic file operations.
• It is organised as a collection of base classes, one for each 

area of file system activity.
• For each part, the specific file system has a structure 

containing function pointers defining the operations it 
provides.

• Pointers to these structures are stored in the generic data 
structures representing mounted file systems, open files, etc.

• The starting point for associating file system specific 
operations with generic operations comes when a file system 
registers itself, passing a structure with a pointer to the 
function that loads the superblock when that file system is 
mounted.



10/03/2010 4

Superblocks
• When a fs is mounted, a fs specific function is 

called to load an internal representation of the fs 
metadata. Named after the original UNIX on-disk 
metadata, this is called the superblock.

• A member of the internal superblock structure 
points to a structure of type struct 
super_operations. This structure contains a 
number of function pointers that are needed to 
carry out operations on a mounted fs.

• Although the name suggests that these functions 
are primarily related to the superblock, most are 
actually functions needed to fetch and manipulate 
other metadata structures called i-nodes.



10/03/2010 5

i-node structure
• Some of the more interesting members of the 

structure include:
– alloc_inode() – allocate the memory for and initialize an 

in-memory i-node structure;
– read_inode() – read an i-node from the fs (disk);
– write_inode() – write a modified i-node back to the file 

system;
– write_super() – similarly handle a modified superblock;
– sync_fs() – ensure that the fs as stored on the device is 

up to date with respect to any cached data.
• One of its members points to a structure which 

contains function pointers for the operations 
needed for operating on i-nodes or directories 
described by the i-node.

Presenter
Presentation Notes
An i-node represents a file. It contains the entire file metadata



10/03/2010 6

• Some of the relevant operations include:
– create() – create a new file in a directory;
– lookup() – fetch a directory entry from a directory;
– mkdir() – create a new subdirectory;
– getattr() – return metadata from an i-node.

• Directories are implemented as lists of directory 
entries. The VFS maintains a cache of directory 
entries that provide a mapping from file names 
to i-nodes. They can be quickly searched to 
avoid unnecessary disk accesses.

• In addition to the i-node operations, the internal 
i-node structure also points to a structure of type 
struct file_operations. When a file is opened, an 
internal structure representing the open file is 
created. This structure points to the file 
operations structure (open, read, write, ioctl,..).



10/03/2010 7

The EXT3 file system
• The third extended (EXT3) fs is probably the most used file 

system in Linux.
• In any disk or partition holding the EXT3 fs, the first block is 

reserved for boot. The next block is a superblock, which is 
replicated in several places in the fs (the block size can be 
1024, 2048, 4096 and even 8192 B).

• EXT3 divides the fs into block groups, each of them having a 
copy of the superblock. The following block is one-block 
group descriptor table, and then two blocks of free bitmaps – 
one for free blocks within the group and one for free i-nodes 
within the group. Following are i-node blocks. The rest of the 
blocks are for data.

• The strategy is to keep the blocks allocated to a file in the 
same group together with its i-node.

• Each entry of the directory structure contains the file name 
and the i-number. EXT3 provides an option to speedup 
directory searches by adding a hash table to the directory.

• EXT3 has a journal, stored as a regular file.



10/03/2010 8

EXT3 name lookup
• The open() system call enters the kernel with the 

function sys_open(). The major function is to locate the i- 
node that corresponds to the path name passed by the 
application.

• The open sys call checks the permission of the operation 
with the i-node and then builds the internal open file data 
structure.

• After about seven nested function calls, the VFS function 
__link_path_walk() is invoked, to follow the path name 
along the directory tree.

• The path name can be either absolute or relative. For an 
absolute path name, one leading slash is sufficient. The 
first name points to the directory entry (which in turn 
points to the i-node) – this is the root directory, or the 
current directory. 



10/03/2010 9

Write operation
• When the file is open the application can call 

read() and write().
• Writing to a file begins by determining the point 

where writing starts (part of the open file 
structure). After that, the control is passed to 
VFS, where the request is checked to make sure 
that it doesn’t violate security (e.g., file open 
read-only) or other limitations. Then, the control 
is passed to the EXT3 specific write function.

sys_file() vfs_write() ext3_file_write()


	Lecture 13
	Slide Number 2
	Virtual file system
	Superblocks 
	i-node structure
	Slide Number 6
	The EXT3 file system
	EXT3 name lookup
	Write operation

