
Lecture 17
 CS 2506

Symbian

OS
Active Objects

16/03/2011 2

Symbian

Features
• The main component is the kernel – it manages the system memory and

schedules programs for execution. It also allocates shared resources and
handles any functionality that requires privileged access to the CPU.

• Other components are the base libraries (APIs), used not only by the
applications but also by OS components, application services, engines and
protocols that provide access for programs to core application data (e.g., list
of contacts, calendar, to-do list) and services, communications architecture
(APIs that include TCP/IP over cellular radio as well as local communication
protocols – Bluetooth, IR, USB) and middleware services.

• It is an event-driven multitasking, multi-threaded OS.

• A process always contains a main thread and additional threads if needed.

• The computing model for applications and the OS itself is client/server. A
server always runs in a different thread/process; it has no user interface and
acts mainly as an engine which provides some functionality to the client, e.g.
the file system server execute commands for file creation, read/write.

16/03/2011 3

AOs

Concurrency
• As process/thread switching is time consuming, multiple active objects

are
used within one thread.

• Active objects (AO) represent a model of lightweight, event-driven multitasking.
Objects run independently of each other.

• A switch between AOs that run in the same thread incurs a lower overhead than
thread context switching.

• An application/server usually is a single, main event-handling thread.

• The thread consists of an active scheduler (event dispatcher) and a set of AOs,
each representing a task.

• The active scheduler waits in a loop for an event (at a semaphore), and then
invokes the event handler of the AO expecting the event. The active scheduler
then waits for the next event,…there is an infinite loop.

• Each AO requests an asynchronous service, waits while it is serviced, handles the
request completion event and communicates with other AOs if necessary.

• Once an AO is handling an event, it cannot be preempted by the event handler of
another AO.

• Real-time issues are managed by process/thread priority.

16/03/2011 4

Threads
• Threads are scheduled preemptively by the kernel – time-sharing.
• They have priorities, and when more have the same priority, the

strategy is round-robin.
• A thread has an absolute priority (Rthread::SetPriority()) and

optionally combined with the priority of the process in which it
runs.

• Relative priorities: EPriorityMuchLess, EPriorityNormal,
EPriorityMuchMore,…

•

Example:

TProcessPriority::EPriorityHigh(=450) and SetPriority()
is called with TThreadPriority of EPriorityMuchLess 450-20 =
430.

• The thread priority can be independent of the process.
• By default, the priority is set to Normal.

16/03/2011 5

Operations on Threads
• Suspend(), Resume()
• Kill()/Terminate()
• Panic() – stop for highlighting a programming error.
• If the main thread of a process is ended, the process is

terminated as well.
• In Kernel EKA2, the security model ensures that a

thread is always protected from other threads – a
thread cannot stop another one.

• The manner in which a thread was stopped can be
determined by calling ExitType(), ExitReason() and
ExitCategory().

16/03/2011 6

Scheduler-AO model

Request
semaphore

Active Scheduler

Active Object 1

Active Object 2

Active Object k

Other threads running the
asynchronous functions

Events

Calling thread

16/03/2011 7

AO practice
• An AO class must derive from class CActive.

• An AO has a priority value; classes deriving from
CActive must call the protected constructor of the base
class and pass a parameter to set the priority of the AO.

• When the asynchronous service associated with the AO
completes, it generates an event. The active scheduler
detects events, determines the associated AOs and
calls the appropriate AO to handle the event.

16/03/2011 8

• If multiple events have occurred before control returns
to the scheduler, they are handled sequentially, in the
order of their priorities.

• The recommended priority value is
EPriorityStandard(=0).

• As part of the construction, the AO code should call a
static function on the active scheduler,
CActiveScheduler::Add(). This adds the AO to the list
of active AO, managed by the active scheduler.

• An AO typically owns an object to which it issues
requests that complete asynchronously, generating an
event. For example, a timer object of type RTimer.

16/03/2011 9

Submitting Requests
1. The request method should check if there is a request

already submitted – each AO can have only one
outstanding request. The result of the check depends
on the implementation (panic, refuse, cancel/submit).

2. The AO then issues the request to the service
provider, passing in its iStatus member variable as
the TRequestStatus& parameter.

3. If the request is submitted successfully, the request
method then calls the SetActive() method to indicate
to the active scheduler that a request is currently
outstanding.

16/03/2011 10

Event Handling
• When a completion event occurs (from the associated

service provider), the active scheduler calls RunL() on
the associated AO.

• Typically, RunL() code determines if the asynchronous
request succeeded by inspecting the completion code in
the TRequestStatus object – a 32-bit integer value.

• Depending on the result, RunL() either issues another
request or notifies other objects in the system.

• As RunL() cannot be preempted, it should complete
quickly.

16/03/2011 11

Event-driven Multitasking using AO
Active Object Asynchronous Service Provider

1. Issue req passing iStatus 2. Sets iStatus=KRequestPending and starts the service

3. Calls SetActive() on itself

4. Service completes. Service provider uses
RequestComplete() to notify the active scheduler and
posts a completion result.

5. Active scheduler calls RunL() on the
AO to handle the event.

RunL() resubmits another request or
stops the active scheduler.

(RunL cannot be preempted) Process or thread boundary

16/03/2011 12

Cancellation
• AO is able to cancel any outstanding requests it

has issued.

• The CActive class implements a Cancel()
method which calls the pure virtual DoCancel()
method (the AO must implement it) and waits
for the request’s early completion.

• DoCancel() calls the appropriate cancellation
method on the service, but can also include
other processing. The golden rule is to be short.

16/03/2011 13

Destruction
• As part of the cleanup code, the destructor of a

CActive-derived class should always call
Cancel() to terminate any outstanding requests.

• This is done before calling DoCancel() method.
• The destructor code should free all resources

owned by the object, including any handle to the
asynchronous service provider.

• The destructor implementation checks that the
AO is not active. It panics if any request is
outstanding.

16/03/2011 14

Roles and Actions
Executable Active Object Active Scheduler Asynchronous Service Provider

Create, install & start
The Active scheduler

Create AO and add it
to the Active scheduler

Issue a request to
the AO

Make a req to the ASP

Call SetActive()

Sets iStatus=KRequestPending
And starts the service

Start the Active
Scheduler if it is not CActiveScheduler::Start()
already started

RunL() handles the
Completed event ….

Service completes and uses
RequestComplete() to notify the
Active scheduler and to post a
Completion result.

Process/thread boundary

Wait Loop

CActiveScheduler::Stop()

16/03/2011 15

AO’s Actions
• An AO provides at least one method for clients to initiate

requests.
• After submitting a request to an asynchronous service

provider, the AO must call SetActive() upon itself. This
sets the iActive

flag, which indicates an outstanding

request. This flag will be used by the active scheduler
upon receipt of an event, and by the class upon
destruction (to determine if the AO can be removed from
the active scheduler).

• An AO must submit only one request at a time.
• The AO implements the RunL() and DoCancel() methods.
• An AO must ensure that it is not awaiting completion of a

pending request when it is about to be destroyed.

16/03/2011 16

Asynchronous Service Provider
• Before beginning to process the request, the object must

set the incoming TRequestStatus

value to
KRequestPending

to indicate to the active scheduler that

a request is ongoing.
• When processing is completed, it must set the

TRequestStatus value to a result code other than
KRequestPending, by calling RequestComplete().

• The RequestComplete() method generates an event that
notifies the completion of the service.

• The service provider must supply a corresponding
cancellation method for each request – this should cancel
an outstanding request immediately, posting KErrCancel

 into the TRequestStatus

object.

16/03/2011 17

The Active Scheduler
• Suspends the thread by calling

User::WaitForAnyRequest(). When an event is generated,
it resumes the thread and inspects the list of AOs.

• Ensures that each request is handled only once. It resets
the iActive

flag of an AO before calling its handler

method. This allows the AO to issue a new request from
its RunL() event handler…

• Raises panic when the request semaphore has been
notified of an event, but the active scheduler cannot find
the corresponding AO (iActive set to Etrue

and

TRequestStatus indicating completion).

16/03/2011 18

Request Completion
1. The normal procedure.
2. The request cannot begin if insufficient resources are

available, or invalid parameters are passed. The service
provider should include a function that neither leaves nor
returns an error code (typically, returns void). The
request completes immediately, and an error is posted in
TRequestStatus.

3. The req is issued and Cancel() is called before its
completion. The AO calls the appropriate cancellation
function of the provider.. it terminates and returns
KErrCancel as quickly as possible – Cancel() is blocking.

4. The request is issued and Cancel() is called after the
request has completed. The provider ignores the call !

	Lecture 17�CS 2506
	Symbian Features
	AOs Concurrency
	Threads
	Operations on Threads
	Scheduler-AO model
	AO practice
	Slide Number 8
	Submitting Requests
	Event Handling
	Event-driven Multitasking using AO
	Cancellation
	Destruction
	Roles and Actions
	AO’s Actions
	Asynchronous Service Provider
	The Active Scheduler
	Request Completion

