
Lecture 18
 CS 2506

Trends in operating systems

The new computing environment requires a new
approach for the way OS services are provided.

18/03/2011 2

Sensors

Sensor networks

Embedded systems

Vehicular networks

Mobiles

Mobile networks

Desktops

Clouds

Internet

Presenter
Presentation Notes
Features of the new computing devices: heterogeneity, large range of hardware services embarked on devices, mobility, more communication technologies.

New OS requirements
• The principal programming abstractions available today

(processes, threads, files, sockets) do not adequately address
the problems of managing locality, mobility, availability,
scalability or fault tolerance.

• The solution can be a distributed OS that will enforce full
location transparency: any code fragment might run anywhere,
any data object might be hosted anywhere. The system will
manage the locality, replication, and migration of
computations and data.

• The system needs to be self-configuring, self-monitoring, and
self-tuning, scalable and secure.

18/03/2011 3

Millennium project at Microsoft
Research

• Goals considering a user- or application-centred
approach:
– Seamless distribution. The system should determine where computations

execute or data resides, moving them dynamically as necessary. Users
should be able to use any computing device that is part of the distributed
system as naturally and productively as they would use the machine on their
desk at home or office.

– Worldwide scalability. Logically there should be only one system, although
at any one time it may be partitioned into many pieces. For example,
disconnected or weakly-connected operations creates temporary network
partitions.

– Fault-tolerance. The system should transparently handle failures or removal
of machines, network links, and other resources without loss of data or
functionality. This should hold true for both the system itself and for its
applications.

18/03/2011 4

– Self-tuning. The system should be able to reason about its
computations and resources, allocating, replicating, and moving
computations and data to optimize its own performance, resource
usage, and fault-tolerance.

– Resource controls. Both providers and consumers may explicitly
manage the use of resources belonging to different trust domains. For
instance, while some people might be content to allow their data and
computations to use any resources available anywhere, some
companies might choose, for instance, not to store or compute their
year-end financial statement on their competitors machines.

– Self-configuration. New machines, network links, and resources
should be automatically assimilated.

– Security. Although a single system image is presented, data and
computations may be in many different trust domains, with different
rights and capabilities available to different security principals. Like
the Internet, the system should allow non-hierarchical trust domains
with no central authority necessary.

18/03/2011 5

Implementation principles
• Aggressive abstraction. The level of abstraction should be raised to the point

that application programmers are freed from the mechanics of distributed
programming and the constraints of physical computing components. This
would allow them to focus on application rather than system aspects such as
communication or fault tolerance. To the greatest extent possible, the system
should handle difficult issues like data placement, resource location, fault-
tolerance, and load-balancing.

• Storage-irrelevance. There should be no storage hierarchy. Once created,
information should be accessible until it is no longer needed or referenced.

• Location-irrelevance. Objects should be allowed to reference each other and
invoke operations without regard for their current location or replication state.
The system should have a seamless appearance despite its underlying
distributed nature.

18/03/2011 6

• Just-in-time binding. Bindings to particular computations, data,
and hardware resources should be made only when actually
required, preventing applications from creating bindings that
would interfere with distribution or fault tolerance.
Computations or data could be arbitrarily duplicated and
bindings made to one instance would be equivalent to bindings
to other instances.

• Introspection. The system should possess some aspects of self-
examination and reflection. It should pervasively monitor itself
and its applications, and reason about configuration and
performance issues. Its models of its own configuration and
operation should suggest opportunities for self-tuning as well as
generate suggestions for physical configuration changes or
upgrades that would improve performance.
18/03/2011 7

The self-managing architecture
• The function of any autonomic capability is a control

loop

that collects details from the system and acts
accordingly.

• The loop consists of four parts:
– The monitor

function: collects, aggregate, filter and reports

info from the managed resource - symptom.
– The analyze

function: correlates and models complex

situations; predicts future situations – request for change.
– The plan

function: uses policy information to command

actions – change plan.
– The execute

function: controls the execution with

dynamic updates.
18/03/2011 8

Single autonomic manager

18/03/2011 9

Where ?
• Advances in science and technology, e.g. in

mobile and clouds, will eventually lead to a
rich in resources and services, heterogeneous
and highly dynamic Internet.

• One question that will need an answer is the
balance between what runs on the device and
what is provided by the Internet.

• OS research and development will play a
significant role, together with advances in
middleware systems.

18/03/2011 10

	Lecture 18�CS 2506
	�The new computing environment requires a new approach for the way OS services are provided.�
	New OS requirements
	Millennium project at Microsoft Research
	Slide Number 5
	Implementation principles
	Slide Number 7
	The self-managing architecture
	Single autonomic manager
	Where ?

