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CS2507 Computer Architecture 
Lecture 4 
The Instruction Set - supporting principles 

In this lecture, we take a look at some of the principles underlying the 8085 architecture. 

In particular, this is our first opportunity to look at operand addressing modes and basic 

integer arithmetic. 

Operand Addressing Modes 

There are many ways in which a processor can access its operands. The 8085 processor 

introduces five of these. Operand addressing modes can be used on their own or in 

combination with each other. 

Implied 

With this addressing mode, the location of the operand is implied by the instruction. For 

instance, CMA (Complement Bits of the Accumulator) operates on the A register. Other 

examples in the 8085 instruction set include XTHL and XCHG. The PUSH and POP 

instructions imply access to the stack through the SP. 

Register 

If there are several registers in the CPU, some bits of the instruction must be allocated to 

distinguishing between them. Registers that are given names in the datasheet description of 

an ISA level are identified by a bit pattern in machine code. This bit pattern is called a 

register address. Since there are generally far fewer registers than memory locations, the 

register address is much shorter than a memory address, typically 3 to 6 bits. The register 

address can often be combined with the opcode in a single byte. 

Example 

 XRA B ; A <– A XOR B 

Immediate 

This is where the operand data is included immediately following the opcode in the 

instruction. In the case of the 8085, the operand will consist of either 1 or 2 bytes, making the 

overall instruction length equal to at least 2 bytes. This addressing mode is useful for loading 

constants, initialising variables and initialising pointers. 

Example 

 LXI H, 3020H ; HL <– 3020  (hexadecimal) 
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Direct 

Here, the instruction contains a memory address, usually following the opcode and any 

register specifier. The operand is contained in the memory location(s) corresponding to the 

address given in the instruction. The overall instruction is at least 3 bytes long. 

Example 

 LDA 3020H ; A <– m<3020H> 

 LHLD 256AH ; L <– m<256AH>; H <– m<256BH> 

Register Indirect 

The instruction operand is in memory. The address of the memory location containing the 

operand is in a register. The register is addressed in the instruction. 

Example 

 LDA 3020H ; A <– m<3020H> 

 LHLD 256AH ; L <– m<256AH>; H <– m<256BH> 

 

Arithmetic 

The 8085 deals only with integer arithmetic. 

Number bases 

Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at 

conversions among them and between each of them and decimal. 

Binary 

Base-two, or binary, contains the digits 0 and 1. 

To convert a decimal number to binary, divide repeatedly by 2 until a quotient of zero is 

produced, keeping track of the remainders and the order in which they occur. Then arrange 

the remainders in reverse order of production, so that the last remainder becomes the most 

significant binary digit (bit) and the first remainder becomes the least significant bit. 

Example 

Convert Decimal 79 to Binary: 

79/2 = 39 Remainder 1 Least Significant Bit (LSB) 

39/2 = 19  Remainder 1 
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19/2 = 9 Remainder 1 

9/2 = 4 Remainder 1 

4/2 = 2 Remainder 0 

2/2 = 1 Remainder 0 

1/2 = 0 Remainder 1 Most Significant Bit (MSB) 

Thus 79D = 1001111B 

To convert a binary number to decimal, note that every bit position has a weighting. If we 

number the bit positions from the right, labeling the rightmost (least significant) bit position 

as position zero, then the weighting of each position is 2 to the power of the bit position. The 

value of each bit position is the digit in that position multiplied by the corresponding 

weighting. The decimal value of the binary number is the sum of all the bit position values. 

Example 

Convert the Binary number 1001111B to Decimal: 

1 * 2^0 = 1 * 1 = 1 

1 * 2^1 = 1 * 2 = 2 

1 * 2^2 = 1 * 4 = 4 

1 * 2^3 = 1 * 8 = 8 

0 * 2^4 = 0 * 16 = 0 

0 * 2^5 = 0 * 32 = 0 

1 * 2^6 = 1 * 64 = 64 

Add 1 + 2 + 4 + 8 + 64 = 79 

Thus 1001111B = 79D 

 

Octal 

Base-eight, or octal, contains the digits 0, 1, 2, 3, 4, 5, 6 and 7. 

To convert a decimal number to octal, divide repeatedly by 8 until a quotient of zero is 

produced, keeping track of the remainders and the order in which they occur. Then arrange 

the remainders in reverse order of production, so that the last remainder becomes the most 
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significant octal digit and the first remainder becomes the least significant octal digit. 

Example 

Convert Decimal 119 to Octal: 

119/8 = 14 Remainder 7 Least Significant Digit 

14/8 = 1 Remainder 6 

1/8 = 0 Remainder 1 Most Significant Digit 

Thus 119 D = 167Q 

To convert an octal number to decimal, note that every octal digit position has a 

weighting. If we number the digit positions from the right, labeling the rightmost (least 

significant) digit position as position zero, then the weighting of each position is 8 to the 

power of the digit position. The value of each digit position is the digit in that position 

multiplied by the corresponding weighting. The decimal value of the octal number is the sum 

of all the octal digit position values. 

Example 

Convert the Octal number 167Q to Decimal: 

7 * 8^0 = 7 * 1 = 7 

6 * 8^1 = 6 * 8 = 48 

1 * 8^2 = 1 * 64 = 64 

Add 64 + 48 + 7 = 119 

Thus 167Q = 119D 

 

Hexadecimal 

Base-sixteen, or hexadecimal, contains the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, 

and F. 

To convert a decimal number to hexadecimal, divide repeatedly by sixteen until a quotient 

of zero is produced, keeping track of the remainders and the order in which they occur. Then 

arrange the remainders in reverse order of production, so that the last remainder becomes the 

most significant hexadecimal digit and the first remainder becomes the least significant bit. 
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Example 

Convert Decimal 1015 to Hexadecimal: 

1015/16 = 63 Remainder 7 Least Significant Digit 

63/16 = 3 Remainder 15 = hex digit F 

3/16 = 0 Remainder 3 Most Significant Digit 

Thus 1015 D = 3F7H 

To convert a hexadecimal number to decimal, note that every bit position has a weighting. 

If we number the hexadecimal digit positions from the right, labeling the rightmost (least 

significant) digit position as position zero, then the weighting of each position is sixteen 

(16D) to the power of the digit position. The value of each digit position is the digit in that 

position multiplied by the corresponding weighting. The decimal value of the hexadecimal 

number is the sum of all the digit position values. 

Example 

Convert the Hexadecimal number 3F7H to Decimal: 

7 * 16^0 = 7 * 1 = 7 

F * 16^1 = 15 * 16 = 240 

3 * 16^2 = 3 * 256 = 768 

Add 768 + 240 + 7 = 1015 

Thus 3F7H = 1015D 

 

Natural numbers 

The 8085 processes mainly 8-bit values and some 16-bit values. An 8-bit value has 2^8 = 

256 different states corresponding to the bit patterns 00000000 to 11111111. Several 

interpretations of the bit patterns are possible. If they are viewed as labels, then 256 distinct 

labels exist. If the patterns are viewed as natural numbers, then there are 256 of these, ranging 

from 0 to 255. The binary number corresponding to decimal 256 is the 9-bit value 

100000000. The ninth bit represents an overflow from the eighth bit position, and in the 8085 

it sets the carry flag so that the overflow can be detected within a program. Note that the 8 

register bits are all set to zero. 
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A 16-bit value has 2^16 = 65536 different states. If viewed as labels, then 65536 labels 

exist, ranging from 0000 0000 0000 0000 to 1111 1111 1111 1111. Therefore a 16-bit 

memory address can distinguish between 2^16 = 2^6 * 2^10 = 64K memory locations. 

Viewed as natural numbers, 16-bit values range from 0 to 65535. Any number greater than 

this represents an overflow that must be handled by appropriate program actions. 

Signed integers 
An 8-bit value processed by the 8085 can be viewed as an integer, having possibly 

positive, negative or zero value. 
The inclusion of negative numbers in a system gives rise to some interesting possibilities. 

Usually, the same quantity of positive and negative numbers is desired, at least 
approximately. In the decimal system, we are accustomed to using the “+” and “-“ signs to 
distinguish between positive and negative quantities. This is known as a signed magnitude 
system, and we have been conditioned into ignoring the resulting two zero values, +0 and -0. 

In the binary system, a fixed number of bits corresponds to a fixed number of possible 
states. If we choose to use some states to represent negative numbers, then there will be fewer 
positive numbers in our system as a consequence. 

For instance, with 8-bit numbers, the leftmost bit (MSB) can be used as a sign bit, with 0 
as a plus sign and 1 as a minus sign. This leaves 7 bits for the magnitude. The range of 
numbers that can be represented will then be -127 .. -0 +0 .. +127, a completely symmetric 
representation with 256 states and two zeroes. Then, adding -5 to +5 gives 10000101 + 
000000101 = 100001010 which is -10 in decimal. Another example is adding -127 to +127, 
which either gives overflow or the number +126, depending on how it is handled. 

Another approach is to use the complement of a number as its negative form, so that 
+0 = 00000000; -0 = 11111111 
+1 = 00000001; -1 = 11111110 
+126 = 01111110; -126 = 10000001 
+127 = 01111111; -127 = 10000000 
Again, this is a symmetric system. The 256 states include two values for zero. This system 

has the advantage that adding +n to -n results in a zero value. The system is known as the 
one’s complement system. Note that the negative numbers all have a 1 in the MSB position. 

In an attempt to eliminate the duplicate zero, consider an extension of the one’s 
complement representation. In this third way of treating negative numbers, we modify the 
one’s complement approach by adding 1 to the one’s complement of a number. The resulting 
system is known as the two’s complement representation. Using this approach, the positive 
integers are the same as in the one’s complement system 

+0 = 00000000; -0 = 11111111 + 1 = 1 0000 0000, the same as + 0 if we ignore the carry. 
+1 = 00000001; -1 = 11111110 + 1 = 1111 1111 
+126 = 01111110; -126 = 10000001 + 1 = 1000 0010 
+127 = 01111111; -127 = 10000000 + 1 = 1000 0001 
The one negative code that does not appear above is 1000 0000.   
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-127 = 1000 0001 - 1 = -128 = 1000 0000. 
So the two’s complement system represents numbers  -128 .. -1 0 1 .. 127. 
Therefore it is an asymmetrical system, having 1 zero in its 256 states. 
In general, n bits can represent 2^n states. 
If natural numbers are represented, the range is 0 .. 2^n - 1 
For signed integers, the range is -2^(n-1) .. +2^(n-1) - 1 
Converting between negative and positive numbers in the two’s complement system 

involves the same operation in both directions. 
Example 
Express -5 in its 8-bit two’s complement form 
+5 = 00000101; -5 = 11111010 + 1 = 11111011 
What is the magnitude of the 8-bit two’s complement number 11111011? 
one’s complement(11111011) = 00000100. Add 1 –> 00000101 
Answer: the magnitude of the number is 5. 
Subtraction can be implemented by two’s complement addition. Instead of a hardware 

subtractor, the number being subtracted can be complemented, incremented and added to the 
other number. 

Example 
Perform the calculation 119D -79D by two’s complement addition 
119D = 167Q from the decimal-to-octal conversion example above. 
167Q = 001 110 111 = 01110111 
79D = 0100 1111B from the decimal-to-binary conversion example above. 
-79D = 1011 0000 + 1 = 1011 0001 
119D + (-79D) = 0111 0111 + 1011 0001 = [1] 0010 1000 = 2^5 + 2^3 = 40 
This is the correct result, but note that there is a carry out of bit 7, indicating (incorrectly) 

a borrow from the next more significant byte position. 
Perform the calculation 79D -119D by two’s complement addition. 
-119D = 1’s complement(0111 0111) + 1 = 1000 1000 + 1 = 1000 1001 
79D + (-119D) = 0100 1111 + 1000 1001 = [0] 1101 1000 
What is this number? It is negative (1 in MSB position), so its magnitude is obtained by 

getting its 2’s complement: 0010 0111 + 1 = 0010 1000 = 2^5 + 2^3 = 40. 
Thus the answer is correct, but no borrow is being generated for use by higher byte 

positions if desired. 
Thus it can be seen that, if subtraction is performed by two’s complement addition, an 

incorrect borrow will result. The 8085 compensates for this by complementing the carry flag 
internally after a subtraction (two’s complement) operation. 

 


