
CS2507 Lecture 4 Dr J. G. Vaughan

Page 1 of 7

CS2507 Computer Architecture
Lecture 4
The Instruction Set - supporting principles

In this lecture, we take a look at some of the principles underlying the 8085 architecture.

In particular, this is our first opportunity to look at operand addressing modes and basic

integer arithmetic.

Operand Addressing Modes

There are many ways in which a processor can access its operands. The 8085 processor

introduces five of these. Operand addressing modes can be used on their own or in

combination with each other.

Implied

With this addressing mode, the location of the operand is implied by the instruction. For

instance, CMA (Complement Bits of the Accumulator) operates on the A register. Other

examples in the 8085 instruction set include XTHL and XCHG. The PUSH and POP

instructions imply access to the stack through the SP.

Register

If there are several registers in the CPU, some bits of the instruction must be allocated to

distinguishing between them. Registers that are given names in the datasheet description of

an ISA level are identified by a bit pattern in machine code. This bit pattern is called a

register address. Since there are generally far fewer registers than memory locations, the

register address is much shorter than a memory address, typically 3 to 6 bits. The register

address can often be combined with the opcode in a single byte.

Example

 XRA B ; A <– A XOR B

Immediate

This is where the operand data is included immediately following the opcode in the

instruction. In the case of the 8085, the operand will consist of either 1 or 2 bytes, making the

overall instruction length equal to at least 2 bytes. This addressing mode is useful for loading

constants, initialising variables and initialising pointers.

Example

 LXI H, 3020H ; HL <– 3020 (hexadecimal)

CS2507 Lecture 4 Dr J. G. Vaughan

Page 2 of 7

Direct

Here, the instruction contains a memory address, usually following the opcode and any

register specifier. The operand is contained in the memory location(s) corresponding to the

address given in the instruction. The overall instruction is at least 3 bytes long.

Example

 LDA 3020H ; A <– m<3020H>

 LHLD 256AH ; L <– m<256AH>; H <– m<256BH>

Register Indirect

The instruction operand is in memory. The address of the memory location containing the

operand is in a register. The register is addressed in the instruction.

Example

 LDA 3020H ; A <– m<3020H>

 LHLD 256AH ; L <– m<256AH>; H <– m<256BH>

Arithmetic

The 8085 deals only with integer arithmetic.

Number bases

Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at

conversions among them and between each of them and decimal.

Binary

Base-two, or binary, contains the digits 0 and 1.

To convert a decimal number to binary, divide repeatedly by 2 until a quotient of zero is

produced, keeping track of the remainders and the order in which they occur. Then arrange

the remainders in reverse order of production, so that the last remainder becomes the most

significant binary digit (bit) and the first remainder becomes the least significant bit.

Example

Convert Decimal 79 to Binary:

79/2 = 39 Remainder 1 Least Significant Bit (LSB)

39/2 = 19 Remainder 1

CS2507 Lecture 4 Dr J. G. Vaughan

Page 3 of 7

19/2 = 9 Remainder 1

9/2 = 4 Remainder 1

4/2 = 2 Remainder 0

2/2 = 1 Remainder 0

1/2 = 0 Remainder 1 Most Significant Bit (MSB)

Thus 79D = 1001111B

To convert a binary number to decimal, note that every bit position has a weighting. If we

number the bit positions from the right, labeling the rightmost (least significant) bit position

as position zero, then the weighting of each position is 2 to the power of the bit position. The

value of each bit position is the digit in that position multiplied by the corresponding

weighting. The decimal value of the binary number is the sum of all the bit position values.

Example

Convert the Binary number 1001111B to Decimal:

1 * 2^0 = 1 * 1 = 1

1 * 2^1 = 1 * 2 = 2

1 * 2^2 = 1 * 4 = 4

1 * 2^3 = 1 * 8 = 8

0 * 2^4 = 0 * 16 = 0

0 * 2^5 = 0 * 32 = 0

1 * 2^6 = 1 * 64 = 64

Add 1 + 2 + 4 + 8 + 64 = 79

Thus 1001111B = 79D

Octal

Base-eight, or octal, contains the digits 0, 1, 2, 3, 4, 5, 6 and 7.

To convert a decimal number to octal, divide repeatedly by 8 until a quotient of zero is

produced, keeping track of the remainders and the order in which they occur. Then arrange

the remainders in reverse order of production, so that the last remainder becomes the most

CS2507 Lecture 4 Dr J. G. Vaughan

Page 4 of 7

significant octal digit and the first remainder becomes the least significant octal digit.

Example

Convert Decimal 119 to Octal:

119/8 = 14 Remainder 7 Least Significant Digit

14/8 = 1 Remainder 6

1/8 = 0 Remainder 1 Most Significant Digit

Thus 119 D = 167Q

To convert an octal number to decimal, note that every octal digit position has a

weighting. If we number the digit positions from the right, labeling the rightmost (least

significant) digit position as position zero, then the weighting of each position is 8 to the

power of the digit position. The value of each digit position is the digit in that position

multiplied by the corresponding weighting. The decimal value of the octal number is the sum

of all the octal digit position values.

Example

Convert the Octal number 167Q to Decimal:

7 * 8^0 = 7 * 1 = 7

6 * 8^1 = 6 * 8 = 48

1 * 8^2 = 1 * 64 = 64

Add 64 + 48 + 7 = 119

Thus 167Q = 119D

Hexadecimal

Base-sixteen, or hexadecimal, contains the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,

and F.

To convert a decimal number to hexadecimal, divide repeatedly by sixteen until a quotient

of zero is produced, keeping track of the remainders and the order in which they occur. Then

arrange the remainders in reverse order of production, so that the last remainder becomes the

most significant hexadecimal digit and the first remainder becomes the least significant bit.

CS2507 Lecture 4 Dr J. G. Vaughan

Page 5 of 7

Example

Convert Decimal 1015 to Hexadecimal:

1015/16 = 63 Remainder 7 Least Significant Digit

63/16 = 3 Remainder 15 = hex digit F

3/16 = 0 Remainder 3 Most Significant Digit

Thus 1015 D = 3F7H

To convert a hexadecimal number to decimal, note that every bit position has a weighting.

If we number the hexadecimal digit positions from the right, labeling the rightmost (least

significant) digit position as position zero, then the weighting of each position is sixteen

(16D) to the power of the digit position. The value of each digit position is the digit in that

position multiplied by the corresponding weighting. The decimal value of the hexadecimal

number is the sum of all the digit position values.

Example

Convert the Hexadecimal number 3F7H to Decimal:

7 * 16^0 = 7 * 1 = 7

F * 16^1 = 15 * 16 = 240

3 * 16^2 = 3 * 256 = 768

Add 768 + 240 + 7 = 1015

Thus 3F7H = 1015D

Natural numbers

The 8085 processes mainly 8-bit values and some 16-bit values. An 8-bit value has 2^8 =

256 different states corresponding to the bit patterns 00000000 to 11111111. Several

interpretations of the bit patterns are possible. If they are viewed as labels, then 256 distinct

labels exist. If the patterns are viewed as natural numbers, then there are 256 of these, ranging

from 0 to 255. The binary number corresponding to decimal 256 is the 9-bit value

100000000. The ninth bit represents an overflow from the eighth bit position, and in the 8085

it sets the carry flag so that the overflow can be detected within a program. Note that the 8

register bits are all set to zero.

CS2507 Lecture 4 Dr J. G. Vaughan

Page 6 of 7

A 16-bit value has 2^16 = 65536 different states. If viewed as labels, then 65536 labels

exist, ranging from 0000 0000 0000 0000 to 1111 1111 1111 1111. Therefore a 16-bit

memory address can distinguish between 2^16 = 2^6 * 2^10 = 64K memory locations.

Viewed as natural numbers, 16-bit values range from 0 to 65535. Any number greater than

this represents an overflow that must be handled by appropriate program actions.

Signed integers
An 8-bit value processed by the 8085 can be viewed as an integer, having possibly

positive, negative or zero value.
The inclusion of negative numbers in a system gives rise to some interesting possibilities.

Usually, the same quantity of positive and negative numbers is desired, at least
approximately. In the decimal system, we are accustomed to using the “+” and “-“ signs to
distinguish between positive and negative quantities. This is known as a signed magnitude
system, and we have been conditioned into ignoring the resulting two zero values, +0 and -0.

In the binary system, a fixed number of bits corresponds to a fixed number of possible
states. If we choose to use some states to represent negative numbers, then there will be fewer
positive numbers in our system as a consequence.

For instance, with 8-bit numbers, the leftmost bit (MSB) can be used as a sign bit, with 0
as a plus sign and 1 as a minus sign. This leaves 7 bits for the magnitude. The range of
numbers that can be represented will then be -127 .. -0 +0 .. +127, a completely symmetric
representation with 256 states and two zeroes. Then, adding -5 to +5 gives 10000101 +
000000101 = 100001010 which is -10 in decimal. Another example is adding -127 to +127,
which either gives overflow or the number +126, depending on how it is handled.

Another approach is to use the complement of a number as its negative form, so that
+0 = 00000000; -0 = 11111111
+1 = 00000001; -1 = 11111110
+126 = 01111110; -126 = 10000001
+127 = 01111111; -127 = 10000000
Again, this is a symmetric system. The 256 states include two values for zero. This system

has the advantage that adding +n to -n results in a zero value. The system is known as the
one’s complement system. Note that the negative numbers all have a 1 in the MSB position.

In an attempt to eliminate the duplicate zero, consider an extension of the one’s
complement representation. In this third way of treating negative numbers, we modify the
one’s complement approach by adding 1 to the one’s complement of a number. The resulting
system is known as the two’s complement representation. Using this approach, the positive
integers are the same as in the one’s complement system

+0 = 00000000; -0 = 11111111 + 1 = 1 0000 0000, the same as + 0 if we ignore the carry.
+1 = 00000001; -1 = 11111110 + 1 = 1111 1111
+126 = 01111110; -126 = 10000001 + 1 = 1000 0010
+127 = 01111111; -127 = 10000000 + 1 = 1000 0001
The one negative code that does not appear above is 1000 0000.

CS2507 Lecture 4 Dr J. G. Vaughan

Page 7 of 7

-127 = 1000 0001 - 1 = -128 = 1000 0000.
So the two’s complement system represents numbers -128 .. -1 0 1 .. 127.
Therefore it is an asymmetrical system, having 1 zero in its 256 states.
In general, n bits can represent 2^n states.
If natural numbers are represented, the range is 0 .. 2^n - 1
For signed integers, the range is -2^(n-1) .. +2^(n-1) - 1
Converting between negative and positive numbers in the two’s complement system

involves the same operation in both directions.
Example
Express -5 in its 8-bit two’s complement form
+5 = 00000101; -5 = 11111010 + 1 = 11111011
What is the magnitude of the 8-bit two’s complement number 11111011?
one’s complement(11111011) = 00000100. Add 1 –> 00000101
Answer: the magnitude of the number is 5.
Subtraction can be implemented by two’s complement addition. Instead of a hardware

subtractor, the number being subtracted can be complemented, incremented and added to the
other number.

Example
Perform the calculation 119D -79D by two’s complement addition
119D = 167Q from the decimal-to-octal conversion example above.
167Q = 001 110 111 = 01110111
79D = 0100 1111B from the decimal-to-binary conversion example above.
-79D = 1011 0000 + 1 = 1011 0001
119D + (-79D) = 0111 0111 + 1011 0001 = [1] 0010 1000 = 2^5 + 2^3 = 40
This is the correct result, but note that there is a carry out of bit 7, indicating (incorrectly)

a borrow from the next more significant byte position.
Perform the calculation 79D -119D by two’s complement addition.
-119D = 1’s complement(0111 0111) + 1 = 1000 1000 + 1 = 1000 1001
79D + (-119D) = 0100 1111 + 1000 1001 = [0] 1101 1000
What is this number? It is negative (1 in MSB position), so its magnitude is obtained by

getting its 2’s complement: 0010 0111 + 1 = 0010 1000 = 2^5 + 2^3 = 40.
Thus the answer is correct, but no borrow is being generated for use by higher byte

positions if desired.
Thus it can be seen that, if subtraction is performed by two’s complement addition, an

incorrect borrow will result. The 8085 compensates for this by complementing the carry flag
internally after a subtraction (two’s complement) operation.

